1. Introduction

Changes in the modern working environment and training patterns have resulted in the need for surgical trainees to achieve competency in a growing number of complex surgical procedures, with reduced training hours and a growing expectation from patients. Given these radical changes in surgical training, the traditional Halstedian apprenticeship model of “see one, do one, teach one” is no longer considered adequate; surgical trainers must therefore look to novel and effective ways to better deliver training.

The majority of surgical errors occur in the operating room (OR) and several studies have identified that an increased number of complications occur during the surgeon’s initial learning curve. The awareness of these dangers, and the fact that patients are no longer happy to be used as training objects, has resulted in a call to move “the learning curve out of the operating room” into a safe and controlled environment.

Simulation has emerged as a tool that, if appropriately integrated into surgical training, may provide a time efficient, cost effective and safe method of training. The value of simulation in urology training is supported by a growing evidence base for its use, leading many authors to call for it to be integrated into the curriculum. There is growing evidence for the utilisation of part task (technical skills) simulators to shorten the learning curve in an environment that does not compromise patient safety. There is also evidence that non-technical skills affect patient outcomes in the operating room and that high fidelity team based simulation training can improve non-technical skills and surgical team performance. This evidence has strengthened the argument of surgical educators who feel that simulation should be formally incorporated into the urology training curriculum to develop both technical and non-technical skills with the aim of optimising performance and patient safety.

Simulation, if appropriately integrated into surgical training, may provide a time efficient, cost effective and safe method of training. The use of simulation in urology training is supported by a growing evidence base for its use, leading many authors to call for it to be integrated into the curriculum. There is growing evidence for the utilisation of part task (technical skills) simulators to shorten the learning curve in an environment that does not compromise patient safety. There is also evidence that non-technical skills affect patient outcomes in the operating room and that high fidelity team based simulation training can improve non-technical skills and surgical team performance. This evidence has strengthened the argument of surgical educators who feel that simulation should be formally incorporated into the urology training curriculum to develop both technical and non-technical skills with the aim of optimising performance and patient safety.

The value of simulation in urology training is supported by a growing evidence base for its use, leading many authors to call for it to be formally integrated into the curriculum. In the United Kingdom, SIMULATE, a national simulation based training program has been developed and validated and in the US simulation based training and assessment forms the basis of the Fundamentals of Laparoscopic Surgery and Fundamentals of Endoscopic Surgery programs.

The majority of the surgical and urology literature on simulation has focused on the use of simulation as a tool for teaching and assessing technical (procedural) skills. Although errors occur during the surgical technical learning curve, the majority of errors in surgery are the result of deficiencies in non-technical skills such as communication, teamwork and decision making.

These deficiencies in non-technical skills have led several authors and government bodies to demand focused training to address this skills gap. Team based simulation has emerged as a powerful training tool to help achieve this.
The aim of this article is to review simulation tools in urology for both technical skills training and non-technical skills (NTS) training and provide an overview of the potential uses for simulation in assessment.

2. Principles of simulation training

Simulation training is not simply about buying a simulator and asking trainees to use it for a set number of hours before being let loose in the OR — training must be effectively integrated into the curriculum and it should be performance based, so that trainees progress when they reach a set standard rather than complete a set number of procedures/training hours. It is beyond the scope of this article to discuss all the principles of curriculum design but the initial step is to identify training needs, then design and implement the training curriculum and finally to assess measurable outcomes.

Several specific aspects of simulation training have been shown to improve learning. In 2010 McGahie et al. published a comprehensive review of simulation based medical education by reviewing simulation literature from 1969 to 2009. Their paper provides a good starting point for trainers interested in simulation and identifies 12 best practices that can enhance learning during simulation training. The top five are listed below:

1. Feedback. Accurate, timely, feedback focused on improving performance has been shown to improve learning in numerous educational contexts and the same is true for simulation. Several simulators are able to record performance metrics and provide automatic feedback.

2. Deliberate Practice. This principle, based on work by psychologist K Anders Ericsson, is frequently referred to in the surgical literature and refers to repetitive, focused practice with appropriate feedback, aiming to achieve a mastery standard.

3. Curriculum Integration. Simulation is not a substitute for clinical based education but should delivered in a timely and appropriate way to complement surgical training.

4. Outcome Measurement: Educators require valid and reliable ways to measure performance to provide feedback and make judgements about trainees. This can also allow performance based curricular to be developed.

5. Simulation Fidelity: The fidelity (realism) of the simulator should match the learning goals — for example, junior trainees may need less realistic simulators for basic skills training than more advanced trainees require for full task simulations.

In addition to these general educational principles there are several practical aspects to consider. Ahmed et al. describe a framework of how to develop simulation training in urology and discuss several challenges and solutions. They summarise the critical factors with five P’s:

- People — involvement of leaders, faculty, management and administrators.
- Place — centralised training facilities vs. hub and spoke models
- Pounds — adequate funding
- Positioning within the curriculum and the surgical rota

...and finally Products — the simulators themselves.

It can therefore be seen that when designing simulation based training the surgeon has to understand the principles of simulation based education, know how to establish a training programme and finally choose the appropriate simulators.

3. Simulators in urology

Urology is particularly well suited to simulation as many operations are endourological (e.g. cystoscopy, TURP, ureteroscopy) or laparoscopic (e.g. nephrectomy, prostatectomy). In addition to numerous laparoscopic simulators there are several urology specific simulators available as shown in Table 2. With advances in simulation technology and developments in surgical practice new simulators are constantly being developed. Simulators include mechanical (synthetic) simulators, virtual reality (VR) simulators, hybrid simulators (mechanical models with computer tracking), human cadavers and animal models — all of which have advantages and disadvantages in terms of cost, facility and faculty requirements, and realism (fidelity).

Table 2: Examples of randomised trials assessing the skill transfer from simulators to the operating room.

<table>
<thead>
<tr>
<th>Study</th>
<th>Simulator platform used for training</th>
<th>Study design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton et al., 2002</td>
<td>MIST-VR™ and Laparoscopic box trainer</td>
<td>Lap Cholecystectomy on patients performed before and after simulation training on either VR or box trainer</td>
<td>Performance significantly improved with training on both the box trainer and VR simulator.</td>
</tr>
<tr>
<td>Garatcharov et al. 2004</td>
<td>VR sigmoidoscopy simulation</td>
<td>Flexible sigmoidoscopy on patients performed after simulation training or no training (control)</td>
<td>Simulation trained group performed significantly better than control.</td>
</tr>
<tr>
<td>Sledlack et al., 2004</td>
<td>LapSIM™</td>
<td>Lap salpingectomy on patients after simulation training or normal clinical experience (control)</td>
<td>Simulation trained group performed significantly better and more quickly than control.</td>
</tr>
<tr>
<td>Larsen et al., 2009</td>
<td>PelvicVision™</td>
<td>TURP on humans before and after simulation or no simulation (as part of a course)</td>
<td>No significant differences — but a trend for improved performance with simulation.</td>
</tr>
<tr>
<td>Kallstrom et al., 2010</td>
<td>ProMIS™ and LapSIM™</td>
<td>Camera navigation skills on patients following simulation or supervised practice on patients</td>
<td>Simulation trained group learned quicker than OR trained group.</td>
</tr>
</tbody>
</table>

Validation studies assess whether a given simulator is a valid educational tool but there are no universally accepted criteria on
Table 2

Urology simulators (for more detail of validation studies see references 27–29) (VR – virtual reality).

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Simulator type</th>
<th>Description of simulator</th>
<th>Face, content and construct validity demonstrated</th>
<th>Evidence of skills transfer to the OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystoscopy</td>
<td>VR</td>
<td>VR simulator (Symbionix)</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>TURP</td>
<td>VR</td>
<td>Pelvic vision</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>TURBT</td>
<td>Bench</td>
<td>Limbs and things</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ureteroscopy</td>
<td>VR</td>
<td>URO mentor (Symbionix)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PCNL</td>
<td>Virtual reality</td>
<td>PERC mentor (Symbionix)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Laparoscopic Nephrectomy</td>
<td>VR</td>
<td>Procedicus MIST (Mentice)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vasovasotomy</td>
<td>Bench</td>
<td>Silicon tubing</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Robotic surgery</td>
<td>VR</td>
<td>dV-trainer (Intuitive Surgical)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TRUS and prostate biopsy</td>
<td>VR</td>
<td>University of Western Ontario</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

* Participants did not statistically improve in all aspects of performance following simulation training.

how to validate a simulator. Consequently there are methodological variations between published studies and some authors have highlighted the need for a consensus regarding validation methodologies. Subjective methods of validation include face and content validation where study participants rate aspects of the simulator using questionnaires (usually with Likert scales). Objective studies of validity include construct validity (whether a simulator can differentiate between experts and novices), criterion validity (comparison of the simulator with a gold standard) and predictive validity (comparison of simulator performance with real OR performance). Some studies have also evaluated the reliability of performance metrics and looked at trainees' learning curves; this additional information can provide data to help plan training and to develop performance based simulation programmes.

It is generally considered that the minimum evidence for widespread simulator use should include face, content and construct validity and this is even better if data on reliability and cost effectiveness are provided. Three systematic reviews have specifically evaluated the evidence for simulators in urology. In 2008 Schout et al. published a review of endourology simulators and in 2011 Ahmed et al. undertook a similar review but included all relevant urological simulators. Recently Abboudi et al. published a review evaluating the robotic simulators available for urology. These three reviews identify and describe numerous available urology simulators and several of these have proven face, content and construct validity as shown in Table 2. Some of these studies have also shown that novices (usually junior doctors or medical students) can improve simulator performance with practice and that this can transfer into improved performance on animal models. Importantly two urology simulators have been used to show that simulator training for junior residents can improve surgical performance in the OR (see Table 2).

It is logical to use simulation during the early part of the learning curve so it is not surprising that studies to date have assessed learning curves in novices and junior trainees. Evidence to date therefore supports simulation more strongly in this setting — however with more advanced simulators that can recreate complex surgery it is likely that in future simulation will be used more throughout urology training. It is possible that future simulators may be even be used to teach higher cognitive skills such as intraoperative decision making.

The well-validated simulators in Table 2 have the best evidence base to support their use but where more than one simulator is available for a given procedure there are no comparative studies to help inform trainers. Further research is needed to compare available simulators and to assess the growing number of new simulators being produced. Educators must therefore consider available evidence but also use their judgment to evaluate how well a given simulator can add to a specific training curriculum — this will not only depend on the simulator but on individual training needs, available facilities, faculty support, and funding.

4. Simulation for non-technical skills training

Surgery, perhaps more than any other branch of medicine, has been defined by the technical skills of its clinicians and this has meant that acquisition of these skills has taken primacy over other training requirements. However, we know that the practice of surgery contains far more than high quality technical skills — non-technical skills (NTS) such as communication and decision-making are vitally important. Extensive human factor research has shown that NTS significantly affect team performance, and patient safety in the operating room. In fact deficiencies in NTS cause more errors in the OR than deficiencies in surgical skill. So why doesn’t surgical training, like the aviation industry, focus on NTS?

Surgical training is starting to change and NTS training and learning objectives have already been introduced into the curricular for the Australasian College of Surgeons, the American College of Surgeons Association of Program Directors in Surgery (ACS-APSD) and the Team Strategies and Tools to Enhance Performance and Patient Safety (team STEPS).
Non-technical skills can be classified into cognitive factors (e.g. decision making, situational awareness, planning) social factors (e.g. communication, teamwork, leadership) and personal resource factors (e.g. ability to cope with stress and fatigue). Several studies have been conducted to identify the NTS and related behaviours that specifically affect performance in the OR. These studies have also developed validated scoring systems that can be used for research, to provide feedback during training and to provide an educational framework to describe these skills to surgeons.

These NTS are not innate personality traits but can be taught and developed through training. Research in medicine and other safety critical industries (e.g. aviation, nuclear power, military) has shown that training can improve NTS and team performance in the workplace. Several strategies have been used to improve NTS but in surgery, as in other industries, simulation based team training has emerged as one of the best ways to achieve this.

Team based training typically uses high fidelity simulated environments to represent clinical scenarios — simulated OR scenarios can be developed by combining a high fidelity human patient manikin with a part task surgical trainer in a simulated OR environment. Modern manikins can reproduce realistic patient physiology while a part-task surgical simulator simulates a technical aspect of the procedure. The aim is to create an environment with enough realism for the surgical team to participate in the simulation, to suspend disbelief, and display realistic team behaviours that can be discussed and analysed during subsequent debriefing. Training can be done in a simulated OR, in the real OR using simulators (in situ training) or even in a mobile inflatable operating room e.g. an “igloo simulator” (Fig. 2).

Careful attention to scenario design, training as a multidisciplinary team and use of video feedback can help maximize learning in these contexts. However, the post-scenario debriefing has consistently been identified as the most important aspect of the learning experience. A skilled facilitator can provide feedback, encourage learners to analyse specific behaviours and NTS, create a safe learning environment and help learners to apply their knowledge to work based settings.

Several groups have analysed the effectiveness of this type of training in surgery and both Lee et al. and Gettman et al. have looked at high fidelity OR simulation training for urologists. Both studies used simulated laparoscopic nephrectomy within a high fidelity simulated OR. In the study by Lee et al. participants felt the training was useful and the debriefing sessions were important learning experiences, which therefore established face validity. Interestingly, technical performance, but not NTS performance was related to the seniority of the trainees suggesting that even experienced residents are in need of NTS training.

In the study by Gettman et al., face validity was also established for the developed scenarios and additional questionnaires looking at the individual aspects of the simulation established content validity. Furthermore, significant improvements in teamwork and team performance were observed in the simulated scenarios following training. These two studies therefore support this type of NTS training in urology.
Studies in other surgical specialties have found that team based NTS training results in improved simulator performance but no studies have directly evaluated whether this improvement can be translated into improved performance in the OR. Such studies are difficult and expensive to conduct and also have ethical constraints (i.e. having a control group of less well trained doctors treating patients). Further research is certainly needed but with strong evidence showing the importance of NTS in ensuring patient safety a pragmatic approach is to integrate NTS training into the curriculum while continuing to investigate the impact this has on real OR performance (Fig. 3).

5. Simulation in assessment

Simulation has been used in assessment for many years in Objective Structured Clinical Examinations where procedures have to be performed on models and histories taken from simulated patients. Surgeons are also familiar with being assessed during simulated scenarios as part of courses such as Advanced Trauma and Life Support.

The use of surgical simulators to guide performance based curricular is one of the strengths of simulation-based training and is supported by many authors. By evaluating performance learners can move through the curriculum at their own pace rather than assuming competence based only on the number of training hours.

Using surgical simulators in high stakes, summative assessment is more controversial, however simulation is being increasingly used for this purpose. For example in the UK, trainee selection for national residency programs includes a skills station that has included simulated ureteric stent insertion, simulated cystoscopy and basic knot tying skills. When using simulators for these types of assessment the two questions that must be asked is: how does this add to the whole assessment process, and how does it compare to other available tests. There is an extensive body of literature on the evaluation of assessment tools and simulation must be assessed by several psychometric criteria to compare it to other available tests. These include validity (for which the studies in Table 2 are useful), reliability, feasibility, educational impact, acceptability and cost-effectiveness — all of these should be considered within the context of the entire assessment process.

6. The future of simulation based training

Simulation based training can teach surgeons without harming patients, and there is excellent evidence supporting its use in the early part of the surgical learning curve. Trainers are now faced with the challenge of integrating simulation training into the urology curriculum in a way that can enhance the performance of urologists and surgical teams to ultimately improve patient outcomes.

As well as implementing training there is a continuing need for research. Randomised controlled studies have shown that simulation can work — the question that is starting to be asked is how does it work and how can simulation training be optimised? This is a complex question as learning is not just dependent on the simulator but on how it is used and in what context. The simulation literature has been criticised for not relating research to established learning theories — without an understanding of how learning occurs it is difficult to design studies to evaluate how to enhance learning.

There is a vast research base in fields such as psychology, motor learning, and the social sciences and several groups are already using expertise in these fields to inform their studies. With further research we may better understand how to use simulation to optimise learning and help trainees to transfer the skills they learn safely on simulators into the complex, and often stressful OR environment.

7. Conclusions

Simulation in urology is becoming an important part of surgical training. There is good evidence for the utility of part task simulators to shorten the learning curve in an environment that does not compromise patient safety. There is also evidence that non-technical skills affect patient outcomes in the operating room and that high fidelity team based simulation training can improve NTS and team performance. This evidence has helped to strengthen the argument by surgical educators who feel that simulation should be formally incorporated into the urology curriculum.

Ethical approval
Not applicable.

Funding
None.

Fig. 3. Identification of learning needs for non-technical skills training. CRM – crisis resource management team based training, NOTTS and NoTECHS – validated NTS scoring systems for surgery.
Conflict of interest

The authors have declared that no conflict of interest exists.

References