Review – Testis Cancer

European Consensus Conference on Diagnosis and Treatment of Germ Cell Cancer: A Report of the Second Meeting of the European Germ Cell Cancer Consensus group (EGCCCG): Part I

1 Department of Urology, Krankenhaus Maria-Hilf, Krefeld, Germany
2 Department of Hemato-Oncology, Vivantes Klinikum Am Urban, Berlin, Germany
3 Department of Radiooncology, Allg. Krankenhaus, Hagen, Germany
4 Department of Urology, Klinikum Kassel, Germany
5 Department of Urology, Rudolfstiftung, Vienna, Austria
6 Department of Pathology, Fundacion Puigvert, Barcelona, Spain
7 Department of Radiooncology, Universität Tübingen, Germany
8 National Institute of Oncology, Chemotherapy and Clinical Pharmacology, Budapest, Hungary
9 Department of Hemato-Oncology, Universität Hamburg, Germany
10 Department of Oncology, University Hospital Lund, Sweden
11 Department of Radiooncology, St. Vincentius Kliniken, Karlsruhe, Germany
12 Department of Oncology, Klinikum rechts der Isar, München, Germany
1. Diagnosis and staging

In 2004 the first consensus paper on diagnostics and treatment in testicular cancer was prepared by the European Germ Cell Cancer Consensus Group (EGCCCG) [1]. In this interdisciplinary process by medical oncologists, urologic surgeons, radiation oncologists and pathologists the methodology of evidence-based medicine (EBM) was applied (Table 1) [2,3]. This paper is an update with the new data emerged since 2002 integrated and prepared again on the basis of evidence-based medicine.

1.1. Clinical presentation of germ cell cancer

The majority of patients present with primary tumour in the testis. Delay in diagnosing germ cell
cancer may be caused either by patients who may ignore symptoms too long, or by physicians who fail to make the correct diagnosis: for example, misclassifying a testicular mass as epididymitis or back pain from retroperitoneal disease resulting from vertebral disc problems [EBM III: 4]. Therefore, a high level of suspicion should be maintained in young men with any of these clinical features. In a minority of patients, the primary tumour manifestation is located extragonadally, that is, in the retroperitoneum or the mediastinum. About one third of patients harbour intratubular germ cell neoplasia (ie, testicular intraepithelial neoplasia [TIN]; synonym: carcinoma in situ [CIS]). In another third of patients, ultrasound of the testes reveals scar tissue, indicating a “burned out” testicular tumour that also has to be removed. Therefore, only one third of these patients definitively have a primary extragonadal germ cell tumour [EBM III: 5] (Table 1).

In all young men with a retroperitoneal, supravacuicular, or mediastinal mass, an underlying germ cell cancer should always be considered [EBM III: 4,6,7]. The diagnosis of an extragonadal germ cell tumour is supported by elevated α-fetoprotein (AFP) or human chorionic gonadotropin (ß-HCG). In case of unequivocal marker elevation, treatment may start immediately, even without histological confirmation. In case of normal tumour markers, the diagnosis of germ cell cancer must be confirmed by biopsy of the extragonadal mass before treatment is initiated. Histologies of poorly or undifferentiated carcinoma or poorly differentiated adenocarcinoma should undergo immunohistological evaluation including markers specific for germ cell tumours and, if possible, the expression of isochrome i(12p), which is also specific for this tumour entity.

1.2. Diagnostic workup for a primary testicular tumour

When assessing the patient’s history, the following risk factors for the development of testicular tumours should be addressed: contralateral testicular tumour [EBM III: 8,9], undescended testis/testicular cryptorchidism [10,11, EBM IIB: 12], poor semen analysis [EBM III: 13–16], and testicular tumour among first-degree relatives, particularly in the father and/or brothers [EBM IIB: 17,18; EBM III: 19].

Mandatory diagnostic examinations (Table 2) include palpation as well as determination of the serum tumour markers AFP, ß-HCG, and lactic dehydrogenase (LDH) [EBM IIA: 20–21,22]. If ultrasound of the testes is performed, a >7.5-MHz transducer should be used [22]. Other imaging procedures, that is, magnetic resonance or positron emission tomography of the testis, should not routinely be used, because their results will not alter the clinical management of the patients.

In every case of suspected testicular malignancy, surgical exploration is obligatory. In patients with life-threatening metastatic disease and an unequivocally elevated AFP or ß-HCG, orchiectomy should not delay the start of chemotherapy, and may be

Table 1 – Hierarchy of scientific evidence (declining from level IA to IV)

<table>
<thead>
<tr>
<th>Level</th>
<th>Sources and characteristics of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Evidence obtained from meta-analysis of randomised clinical controlled trials (RCTs) and systematic reviews of RCTs</td>
</tr>
<tr>
<td>IB</td>
<td>Evidence obtained from at least one RCT</td>
</tr>
<tr>
<td>IIA</td>
<td>Evidence obtained from at least one well-designed controlled study without randomisation</td>
</tr>
<tr>
<td>IIB</td>
<td>Evidence obtained from at least one other type of well-designed quasi-experimental study</td>
</tr>
<tr>
<td>III</td>
<td>Evidence obtained from well-designed non-experimental descriptive studies, such as comparative studies, correlation studies and case studies</td>
</tr>
<tr>
<td>IV</td>
<td>Evidence obtained from expert committee reports or opinions and/or clinical experience of respected authorities without transparent proof</td>
</tr>
</tbody>
</table>

Table 2 – Diagnosis and staging of germ cell cancer

<table>
<thead>
<tr>
<th>Markers, mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminoma/non-seminoma ⇒ AFP, ß-HCG</td>
</tr>
<tr>
<td>Metastatic disease ⇒ LDH in addition to AFP and ß-HCG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testicular ultrasound (7.5-MHz transducer)</td>
</tr>
<tr>
<td>Chest X-ray</td>
</tr>
<tr>
<td>CT scan of abdomen and pelvis (eg, contrast media)</td>
</tr>
<tr>
<td>MRT of chest and abdomen: only if contraindication for CT can</td>
</tr>
<tr>
<td>MRT of CNS: in advanced disease or in presence of symptoms</td>
</tr>
<tr>
<td>Bone scan: only in presence of symptoms</td>
</tr>
<tr>
<td>PET scan: Identify viable tissue in residual lesion >3 cm in advanced seminoma if determined >4 weeks after chemotherapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertility investigations (should be offered):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total testosterone, LH, FSH, semen analysis, sperm banking</td>
</tr>
</tbody>
</table>

AFP, α-fetoprotein; CT, computed tomography; FSH, follicle-stimulating hormone; HCG, human chorionic gonadotropin; LDH, lactate dehydrogenase; LH, luteinisng hormone; MRT, magnetic resonance tomography; PET, positron emission tomography.
postponed until later in the treatment course or until the completion of chemotherapy [EBM IB: 23, EBM IIB: 24,25].

2. Treatment of the primary tumour

2.1. Orchiectomy

As a rule orchiectomy is performed before any further treatment (Table 3). Orchiectomy should be scheduled timely (within 1 wk). However, there is no need for emergency (within 24 h) surgery. The results of the tumour marker determination should be available before surgery and have to be reevaluated thereafter to determine the half-life kinetic (half-life time: AFP < 7 d; β-HCG < 3 d).

Radical orchiectomy is performed through an inguinal incision [EBM IIA: 26, EBM IIB: 27,28]. Any scrotal violation for biopsy or open surgery should strongly be avoided. The tumour-bearing testicle is resected along with the spermatic cord at the level of the internal inguinal ring. In patients with negative serum tumour markers and small and possibly benign tumours, histological analysis of a frozen section should be performed before definitive orchiectomy to allow organ-sparing surgery, particularly if a benign tumour is found [EBM IIB: 29,30; EBM III: 31,32].

2.2. Organ-preserving surgery

Organ-preserving surgery might be an alternative to orchiectomy in small primary tumours, but this approach is highly experimental and must be limited to clinical trials. However, in patients with synchronous bilateral tumours, metachronous contralateral tumours, or solitary testicles with normal preoperative testosterone levels, organ-preserving surgery is an alternative procedure to orchiectomy and should be discussed with the patient (Table 3). If organ-preserving surgery is considered, the patient should always be treated at a center with experience in the management of this rare clinical situation [EBM IIB: 33,34]. If organ-preserving surgery is performed and TIN is histologically documented in the remaining testicular tissue, adjuvant radiotherapy according to the management strategy for TIN in unilateral tumours is recommended [EBM IIB: 33–35]. Adjuvant radiotherapy may be delayed in patients who wish to father children.

3. Diagnosis and treatment of intratubular germ cell neoplasia

3.1. Testicular biopsy in patients with gonadal germ cell cancer

Intratubular germ cell neoplasia (TIN/CIS) is defined as a malignant preinvasive testicular germ cell lesion. In patients with TIN, the cumulative probability for the development of a testicular tumour is 70% after 7 yr [EBM IIB: 36]. Up to 9% of patients with testicular tumours harbour TIN within the contralateral “normal” testicle, which is detectable by open biopsy, best performed as a double biopsy to increase the detection rate to >99% [EBM IIB: 37,38] (Table 4). For patients with testicular volumes < 12 ml and an age < 40 yr, the risk of TIN in the contralateral testis is >34% [EBM IIA: 35,39; EBM IIB: 37,38]. Therefore, the option of a contralateral testicular biopsy should be discussed with the patient, particularly with those at high risk of TIN [EBM IIA: 35]. Contralateral biopsy should be performed preferably at the time of orchiectomy.

<table>
<thead>
<tr>
<th>Table 3 – Treatment of the primary testis tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical orchiectomy</td>
</tr>
<tr>
<td>Before any further treatment</td>
</tr>
<tr>
<td>If life-threatening metastatic disease and unequivocal diagnosis of germ cell tumour by marker elevation: immediate chemotherapy followed by delayed orchiectomy</td>
</tr>
<tr>
<td>Organ-preserving surgery of testis tumour may be considered in case of</td>
</tr>
<tr>
<td>Synchronous bilateral testis tumours</td>
</tr>
<tr>
<td>Metachronous contralateral (second) testis tumour</td>
</tr>
<tr>
<td>Tumour in a solitary testis and sufficient endocrine function</td>
</tr>
<tr>
<td>Performed at experienced centres only!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4 – Prevalence and diagnosis of TIN in the testis not affected by germ cell tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy for detection of TIN in contralateral tests</td>
</tr>
<tr>
<td>9% of all patients with testicular tumour</td>
</tr>
<tr>
<td>≥34% TIN in patients with testicular atrophic volume <12 ml and age <40 yr</td>
</tr>
<tr>
<td>≥33% TIN in patients with extragonadal germ cell tumour before chemotherapy</td>
</tr>
<tr>
<td>Approximately 10% TIN in patients with extragonadal germ cell tumour after chemotherapy</td>
</tr>
<tr>
<td>If untreated, invasive testis tumour develops in 70% of TIN-positive testis within 7 yr; 99% of TIN detected by biopsy</td>
</tr>
<tr>
<td>Biopsy not mandatory but strongly recommended in high-risk patients (atrophy and young age)</td>
</tr>
<tr>
<td>Extragonadal germ cell tumour (before chemotherapy, if not prior, then not earlier than 2 yr after chemotherapy)</td>
</tr>
<tr>
<td>Contralateral tests, one or both tests in extragonadal germ cell tumour</td>
</tr>
</tbody>
</table>

TIN, intratubular germ cell neoplasia.
Biopsies to identify TIN are best preserved in Stieve’s or Bouin’s solution (not in formalin!) [EBM IIB: 40,41].

3.2. Testicular biopsy in patients with extragonadal germ cell cancer

About one third of patients with extragonadal germ cell cancer harbour TIN within one or both testicles, which otherwise appear normal. The cumulative risk of developing a metachronous testicular cancer 10 yr after diagnosis and treatment of extragonadal germ cell tumours is only 10%; the risk is higher among patients with non-seminomatous histology or retroperitoneal location than among patients with pure seminomatous histology (1.4%) or primary mediastinal location (6.2%) [EBM III: 6]. However, because all patients with extragonadal germ cell cancer will receive platin-based chemotherapy, which will eliminate a substantial percentage of TIN, a routinely performed bilateral testicular biopsy is not recommended (Table 4). Nevertheless, if biopsy is planned in patients with a higher risk for TIN after an extragonadal germ cell tumour, the biopsy should be preferably performed before chemotherapy [22, EBM III: 42,43]. If performed thereafter, testicular biopsy should be considered not earlier than 2 yr after the completion of chemotherapy [22, EBM III: 42,43].

3.3. Treatment of TIN

3.3.1. TIN in the contralateral testis or in the affected single testis after organ-preserving surgery

There are three possible options in this clinical situation, that is, orchietomy, radiotherapy, or a surveillance strategy (Table 5); all options should be discussed with the patient. Both orchietomy and radiotherapy offer definitive treatment of TIN, but will destroy potential residual fertility. Because the interval between diagnosis of TIN and the development of a testicular tumour is usually long, a surveillance strategy is justified for patients who want to father children and have residual spermatogenesis sufficient at least for assisted fertilization. In the case of surveillance strategy, regularly performed evaluation of the TIN-bearing testicle by ultrasound is mandatory.

If radiation treatment is chosen, a total dose of 20 Gy (single doses of 2 Gy, five fractions per week) seems to be the most appropriate treatment to eliminate all TIN loci [EBM III: 44–47]. For preservation of testosterone production, radiation doses <20 Gy have been investigated. Whereas the potential benefit of this strategy is uncertain, a radiation dose <20 Gy may result in lower frequencies of complete TIN eradication [EBM IIB: 48–50]. After radiation treatment, regular determination of the serum testosterone levels should be performed, because radiation may impair Leydig cell function [EBM IIB: 49]. The same evaluation applies to patients after organ-preserving surgery. All patients with subnormal testosterone levels and clinical signs of androgen deficiency should be offered hormone supplementation treatment.

3.3.2. Treatment of TIN in patients without overt gonadal tumours

TIN may be found incidentally in a testis investigated for other reasons (infertility or extragonadal germ cell tumours). In patients with a normal contralateral testicle, orchietomy is a reasonable choice for definitive treatment, because radiation treatment of TIN might impair fertility of the contralateral unaffected testicle owing to scattered radiation (Table 5). This particularly applies to patients with an atrophic TIN-bearing testicle.

3.3.3. Treatment of TIN in patients scheduled to receive chemotherapy

If chemotherapy is planned in patients with TIN, radiation treatment should be postponed to avoid extensive damage to Leydig cells by the combination of chemotherapy and irradiation (Table 5). Furthermore, in about two thirds of patients, TIN will be eradicated by chemotherapy alone [EBM IIB: 48; EBM III: 46,51]. Biopsies performed early after chemotherapy might not detect TIN. Therefore, a further biopsy may be considered in those patients not earlier than 2 yr after chemotherapy has been completed. Technically, biopsies at two sites are strongly recommended in this particular situation, because TIN cells will probably be low in number secondary to chemotherapy; thus, a single random biopsy

<table>
<thead>
<tr>
<th>Table 5 – Treatment of testicular intraepithelial neoplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIN in contralateral testis or in case of organ-preserving surgery</td>
</tr>
<tr>
<td>If fertility should be maintained ⇒ delay definitive treatment by active surveillance until conception, followed by active treatment or further surveillance</td>
</tr>
<tr>
<td>If fertility not relevant ⇒ irradiation 20 Gy (2 Gy, 5×/wk)</td>
</tr>
<tr>
<td>TIN in patients without gonadal tumour (incidental diagnosis, eg, by biopsy for infertility or extragonadal germ cell tumour)</td>
</tr>
<tr>
<td>Orchietomy to be preferred over irradiation (potential damage of contralateral not affected tests by scattered radiation)</td>
</tr>
<tr>
<td>TIN in patients receiving chemotherapy (either as adjuvant treatment or for advanced or extragonadal disease)</td>
</tr>
<tr>
<td>Because chemotherapy eradicates TIN in 2/3 of the patients with TIN before chemotherapy, definitive treatment for TIN only if TIN is diagnosed at (re)biopsy after chemotherapy</td>
</tr>
</tbody>
</table>

TIN, testicular intraepithelial neoplasia.
would have a high probability of missing the diagnosis [EBM IIb: 37,38]. In cases of TIN persisting after chemotherapy, those patients should be managed as described above.

4. Histological examination of germ cell cancer

It is recommended to completely laminate the testicular specimen in transverse sections. Additional sections have to be taken from the spermatic cord. For full histological examination of the tumour, it is necessary to obtain one block per centimetre of tumour, not less than a total of three blocks, as well as blocks from the peritumoural region and of remote testicular tissue. Further samples have to be taken from the funicular resection margin and from the spermatic cord within a 1-cm distance to the testicle. Immunohistology can include staining for cytokeratin for the detection of non-seminomatous elements, CD31/factor VIII for the identification of vessel endothelium; however, AFP and ß-HCG are mandatory. TIN may be identified with the use of hematoxylin-eosin preparations or placental alkaline phosphatase staining, or by semithin-section technique.

There are two types of seminoma: seminoma with a subtype “seminoma with syncytiotrophoblastic cells” and spermatocytic seminoma with a subtype “spermatocytic seminoma with sarcoma.” The World Health Organization (WHO) classification (Table 6) [51] mentions only teratoma without subdivision into mature and immature forms. Poly-embryoma is no longer listed. The histopathological report must address the following issues (Table 7): localisation and size of the tumour, multiplicity, tumour extension (rete testis, tunica albuginea, tunica vaginalis, epididymis, spermatic cord, scrotum), pT category according to the International Union Against Cancer (UICC) classification [53], histological type (WHO-ICD-O-M), the presence or absence of TIN, and the presence or absence of vascular invasion of blood or lymphatic vessels [54]. In tumours with pluriform structures, each individual component and its estimated relative proportion must be documented. Similarly, evidence of syncytiotrophoblasts should be indicated in seminoma as well as any additional sarcomatous elements in spermatocytic seminomas as recommended by the WHO. Because of the clinical importance, it is highly recommended that all histological specimens be assessed by a pathologist experienced in testis cancer pathology [55].

<table>
<thead>
<tr>
<th>Table 6 – WHO classification of germ cell tumours of the testis [51]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological type [53]</td>
</tr>
<tr>
<td>Intratubular germ cell neoplasia, unclassified</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Tumours of one histological type (pure forms)</td>
</tr>
<tr>
<td>Seminoma</td>
</tr>
<tr>
<td>(Subtype) Seminoma with syncytiotrophoblastic cells</td>
</tr>
<tr>
<td>Spermatocytic seminoma</td>
</tr>
<tr>
<td>(Subtype) Spermatocytic seminoma with sarcoma</td>
</tr>
<tr>
<td>Embryonal carcinoma</td>
</tr>
<tr>
<td>Yolk sac tumour</td>
</tr>
<tr>
<td>Trophoblastic tumours</td>
</tr>
<tr>
<td>Choriocarcinoma</td>
</tr>
<tr>
<td>Trophoblastic neoplasms other than choriocarcinoma</td>
</tr>
<tr>
<td>Monophasic choriocarcinoma</td>
</tr>
<tr>
<td>Placental site trophoblastic tumour</td>
</tr>
<tr>
<td>Teratoma</td>
</tr>
<tr>
<td>Dermoid cyst</td>
</tr>
<tr>
<td>Monodermal teratoma</td>
</tr>
<tr>
<td>Teratoma with somatic type malignancies</td>
</tr>
<tr>
<td>Tumours of more than one histological type (mixed forms)</td>
</tr>
<tr>
<td>Mixed embryonal carcinoma and teratoma</td>
</tr>
<tr>
<td>Mixed teratoma and seminoma</td>
</tr>
<tr>
<td>Choriocarcinoma and teratoma/embryonal carcinoma</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

WHO, World Health Organization.

4.1. Staging procedures and prognostic classification

Defining the clinical stage (CS) of a patient with a gonadal germ cell tumour is based on the UICC TNM classification (Table 8) [53]. For verification of CS I disease, markers should be followed after orchiectomy until normalization is achieved. Patients without marker normalization after orchiectomy are defined as stage IS disease. Patients with metastatic disease are classified according to the

<table>
<thead>
<tr>
<th>Table 7 – Histopathological report of testicular tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localisation</td>
</tr>
<tr>
<td>Multiplicity</td>
</tr>
<tr>
<td>Extension of tumour (e.g., rete testis involvement etc.)</td>
</tr>
<tr>
<td>Histopathological type (WHO)</td>
</tr>
<tr>
<td>In seminoma: presence of syncytiotrophoblasts</td>
</tr>
<tr>
<td>In pluriform tumours: description of each individual component</td>
</tr>
<tr>
<td>Presence of vascular invasion</td>
</tr>
</tbody>
</table>

TIN, testicular intraepithelial neoplasia; UICC, International Union Against Cancer; WHO, World Health Organization.
classification of the International Germ Cell Cancer Collaborative Group (IGCCCG) [56], which includes histology, location of primary tumour, location of metastases, and levels of AFP, β-HCG, and LDH after orchiectomy and before chemotherapy, as prognostic markers to categorise patients into “good,” “intermediate,” and “poor” prognosis groups (Table 9). The individual treatment strategy is based on both the TNM classification and the IGCCCG classification based on prognostic factors.

<table>
<thead>
<tr>
<th>pT</th>
<th>Primary tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>pT0</td>
<td>No evidence of primary tumour (eg, histological scar in testis</td>
</tr>
<tr>
<td>pTis</td>
<td>Intratubular germ cell neoplasia (carcinoma in situ)</td>
</tr>
<tr>
<td>pT1</td>
<td>Tumour limited to testis and epididymis without vascular/lymphatic invasion: tumour may invade tunica albuginea but not tunica vaginalis</td>
</tr>
<tr>
<td>pT2</td>
<td>Tumour limited to testis and epididymis with vascular/lymphatic invasion, or tumour extending through tunica albuginea with involvement of tunica vaginalis</td>
</tr>
<tr>
<td>pT3</td>
<td>Tumour invades spermatic cord with or without vascular/lymphatic invasion</td>
</tr>
<tr>
<td>pT4</td>
<td>Tumour invades scrotum with or without vascular/lymphatic invasion</td>
</tr>
</tbody>
</table>

N | Regional lymph nodes clinical |
NX | Regional lymph nodes cannot be assessed |
N0 | No regional lymph node metastasis |
N1 | Metastasis with a lymph node mass 2 cm or less in greatest dimension or multiple lymph nodes, none more than 2 cm in greatest dimension |
N2 | Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension, or multiple lymph nodes, any one mass more than 2 cm but not more than 5 cm in greatest dimension |
N3 | Metastasis with a lymph node mass more than 5 cm in greatest dimension |

pN | Pathological |
pNX | Regional lymph nodes cannot be assessed |
pN0 | No regional lymph node metastasis |
pN1 | Metastasis with a lymph node mass 2 cm or less in greatest dimension and 5 or fewer positive nodes, none more than 2 cm in greatest dimension |
pN2 | Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence or extranodal extension of tumour |
pN3 | Metastasis with a lymph node mass more than 5 cm in greatest dimension |

M | Distant metastasis |
MX | Distant metastasis cannot be assessed |
M0 | No distant metastasis |
M1 | Distant metastasis |
M1a | Non-regional lymph nodes(s) or lung |
M1b | Other sites |
S | Serum tumour markers |
Sx | Serum marker studies not available or not performed |
S0 | Serum marker study levels within normal limits |
LDH (U/l) HCG (miU/ml) AFP (ng/ml) |
S1 | <1.5 x N and <5000 and <1000 |
S2 | 1.5–10 x N or 5000–50,000 or 1000–10,000 |
S3 | >10 x N or >50,000 or >10,000 |

N indicates the upper limit of normal for the LDH assay. Except for pTis and pT4, where radical orchiectomy is not always necessary for classification purposes, the extent of the primary tumour is classified after radical orchiectomy; see pT in other circumstances. TX is used if no radical orchiectomy has been performed.

According to the 2002 TNM classification, stage I testicular cancer includes the following substages:

<table>
<thead>
<tr>
<th>Stage</th>
<th>pT</th>
<th>N</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>pT1</td>
<td>NO</td>
<td>MO</td>
<td>S0</td>
</tr>
<tr>
<td>IB</td>
<td>pT2, pT3, or pT4</td>
<td>NO</td>
<td>MO</td>
<td>S0</td>
</tr>
<tr>
<td>IS</td>
<td>Any pT/TX</td>
<td>NO</td>
<td>MO</td>
<td>S1–3</td>
</tr>
</tbody>
</table>

AFP, α-fetoprotein; HCG, human gonadotropin; LDH, lactate dehydrogenase UICC, International Union Against Cancer.

4.2. Prognostic factors in low-volume disease

4.2.1. Seminoma CS I

Although no prognostic classification system has been prospectively validated, there is evidence from surveillance studies that the size of the primary tumour (≤ 4 cm vs. >4 cm) and infiltration of the rete testis are independent prognostic indicators for occult metastases [EBM IIB: 57]. Patients with both factors represent a high-risk
population, with a recurrence rate as high as 32%. These histopathological parameters should therefore be documented. Patient age (<34 vs. ≥34 yr) and the presence of vascular invasion (VI) are of equivocal prognostic relevance [EBM IIA: 58,59; EBM IIB: 57; EBM III: 59,60].

4.2.2. Non-seminoma CS I
Infiltration of venous blood vessels or lymphatic infiltration (ie, VI) by the primary tumour are the most important prognostic indicators for occult metastases, and must be assessed in all patients [EBM II: 61, EBM IIA: 62–65, EBM IIB: 66–71, EBM III: 72–76]. Without adjuvant treatment, 48% of the patients with VI will develop metastases, whereas only 14–22% of those without this treatment will relapse [EBM IIB: 67]. The proliferation rate and the percentage of embryonal carcinoma in relation to the total tumour volume are further prognostic indicators [EBM IIB: 64,67,68,71; EBM III: 72–78]. However, these markers do not contribute independent prognostic information in addition to the factor of VI.

4.2.3. Non-seminoma pathological stage (PS) IIA/B
If no adjuvant chemotherapy after retroperitoneal lymph node dissection is administered [EBM III: 79], the volume of the retroperitoneal mass (<2 cm [PS IIA] vs. 2–5 cm [PS IIB]) and the presence of VI within the primary tumour are independent prognostic indicators for relapse.

4.2.4. Imaging procedures
Recommendations concerning staging investigation are frequently based on low-level evidence rather than on the results of prospective phase 3 studies. Therefore, meaningful EBM graduation frequently cannot be given [80].

Computed tomography (CT) of the chest, abdomen, and pelvis are required as initial staging investigations. CT of the chest may be omitted for patients with testicular seminoma presenting

Table 9 – IGCCCG prognostic grouping classification [56]

<table>
<thead>
<tr>
<th>Prognosis</th>
<th>5-year survival</th>
<th>Non-seminoma</th>
<th>Seminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>90%</td>
<td>- Testis or primary extragonadal retroperitoneal tumour and no non-pulmonary visceral metastases and low markers and AFP < 1000 ng/ml and ß-HCG < 1000 ng/ml (<5000 IU/l) and LDH < 1.5× normal level</td>
<td>Any primary localisation and no non-pulmonary visceral metastases and Any marker level</td>
</tr>
<tr>
<td>Intermediate</td>
<td>75%</td>
<td>- Testis or primary extragonadal retroperitoneal tumour and no presence of non-pulmonary visceral metastases and intermediate markers and AFP 1000–10,000 ng/ml and/or ß-HCG 1000–10,000 ng/ml (5000–50,000 IU/l) and/or LDH 1.5–10× normal level</td>
<td>Any primary localisation and presence of non-pulmonary visceral metastases (liver, CNS, bone, intestinum) and Any marker level</td>
</tr>
<tr>
<td>Poor</td>
<td>50%</td>
<td>- Primary mediastinal germ cell tumour with or without testis or primary retroperitoneal tumour and presence of non-pulmonary visceral metastases (liver, CNS, bone, intestinum) and/or “high markers” and AFP >10,000 ng/ml and/or ß-HCG > 10,000 ng/ml (50,000 IU/l) and/or LDH > 10× normal level</td>
<td>—</td>
</tr>
</tbody>
</table>

AFP, alpha-fetoprotein; ß-HCG, human chorionic gonadotropin; CNS, central nervous system; IGCCCG, International Germ Cell Cancer Collaborative Group; LDH, lactic dehydrogenase.
without a retroperitoneal tumour mass. Oral and intravenous contrast media are mandatory [70,81–85]. For evaluation of the lung and mediastinum, chest CT scan is more sensitive than plain X-ray films [70,85–87]. However, it should be noted that pulmonary/pleural nodules of <1 cm can represent a false-positive finding in CT scans [82, EBM IIB: 70,85; EBM III: 75,86,88]. Furthermore, CT scans of the abdomen and pelvis might give false-negative results in up to 30% of cases, because of difficulties in the interpretation of lymph nodes based on morphology and size alone. Therefore, the differentiation between clinical stages I and IIA is unreliable, if both AFP and β-HCG are normal [82–84,89,90]. A detailed description of the location, number, and size of lymph nodes should be provided in the radiology report. Ultrasound of the retroperitoneum is less sensitive than CT [84]. Magnetic resonance tomography scans of the abdomen and pelvis do not provide additional information and should be restricted to patients to whom intravenous contrast media cannot be given [91,92]. On the basis of available data, PET has not conclusively demonstrated to improve sensitivity of staging compared with CT scanning alone. Not even in high-risk stage I patients was PET sensitive enough to predict early metastatic disease in a statistically significant proportion of patients [EBM IIB: 93,94]. PET scans are not recommended outside clinical trials as part of routine initial staging procedures [95–101]. Bone scans should be obtained in patients in whom bone metastases are clinically suspected. Imaging of the brain, preferably by magnetic resonance tomography, is required in patients with clinical symptoms and signs indicating brain metastases, particularly when they occur in patients with advanced disease [EBM III: 102,103].

5. Treatment-associated fertility issues and sperm banking

In patients of reproductive age, baseline fertility assessment should be performed, including the determination of total testosterone level, luteinising hormone, follicle-stimulating hormone, and semen analysis. The patient must be informed about and offered the possibility of cryoconservation, preferably carried out before orchiectomy [EBM IIB: 50; EBM III: 47,104,105; EBM IV: 106–108]. Patients with bilateral testicular tumours, or a testicular tumour with contralateral TIN and with severe oligo-, azo-, or aspermia should be informed about the option of testicular sperm extraction [EBM III: 44, EBM III/IV: 108–112].

5.1. Testosterone replacement

In patients with bilateral orchiectomy, lifelong testosterone replacement must be offered to maintain sexual functioning and avoid late toxicity from hypogonadism. After unilateral orchiectomy, the necessity for testosterone supplementation depends on testosterone serum levels and clinical symptoms [113].

5.2. Contraception

Although no increased risk of malformation in children born after the end of cytotoxic treatment has been reported, contraception throughout chemo- or radiotherapy as well as for 1 yr of follow-up is suggested [EBM III: 114].

6. Treatment of patients with seminoma CS I

Despite normal CT scans, up to 32% of patients with CS I seminoma can relapse if no adjuvant treatment is given [EBM IIB: 57,115,116]. Nevertheless, the cure rate in CS I seminoma patients is almost 100% and can be achieved with three strategies: surveillance with salvage irradiation or chemotherapy at relapse, adjuvant chemotherapy with single-agent carboplatin, and—with the most mature follow-up data—adjuvant radiation treatment [EBM IB: 117; EBM IIB: 118–120]. Tumour size >4 cm and rete testis invasion have been recognized as risk factors for occult metastatic disease in retrospective analyses [EBM IIB: 57]. Patients with both risk factors represent a high-risk group with a relapse rate that may be as high as 32%. These risk factors can be used to advise patients in making their treatment selection. With the use of the risk-adapted strategy, low-risk patients may be managed by surveillance as the preferred treatment option, if compliance and follow-up can be ascertained. High-risk patients can be treated with surveillance or adjuvant treatment on the basis of a patient’s preference. All three treatment options, surveillance, adjuvant carboplatin, or adjuvant radiotherapy are acceptable strategies for the management of patients with CS I seminoma (Fig. 1).

The risks and benefits of any of the three strategies—for example, the potential of relapse using surveillance (Fig. 1) and the potential for late toxic effects from adjuvant treatment—have to be discussed with the patient, taking into account not only the individual preferences of the patient, but also the experience with each strategy at the local treatment centre.
6.1 Surveillance

A surveillance strategy should be used as the preferred treatment option in patients in whom this approach is considered feasible [EBM IIB: 115,116]. This recommendation takes into account that up to 88% of patients can be cured by orchiectomy and are therefore overtreated by any
adjuvant treatment. The results of a retrospective meta-analysis of patients managed by surveillance indicate a 5-yr relapse rate of 12% without any risk factor, a 16% risk of relapse at 5 yr in case of one risk factor, and a 32% relapse rate in case of two risk factors (tumour size $>$ 4 cm; tumour invasion of the rete testis) [EBM IIB: 57]. The second Spanish Germ Cell Cancer Cooperative Group study about the efficacy of a risk-adapted treatment policy using the same risk factors even showed a 5-yr disease-free survival rate of 93.4% in patients without any of these risk factors, who therefore were treated by surveillance [EBM IIB: 121]. Relapses will occur in 97% of cases in the retroperitoneal or high iliac lymph nodes [EBM IIB: 58,116,123] and may occur as late as 10 or more years after orchiectomy [EBM IIB: 58,116,124, EBM III: 125]. This higher risk of relapse requires prolonged follow-up of patients. Treatment of those patients who relapse is usually more intensive [EBM IIB: 115, EBM III: 125]. Because of the higher risk of relapse, patients managed by surveillance may experience greater psychological stress than those receiving adjuvant treatment [EBM III: 126].

6.2. Adjuvant carboplatin

One alternative to surveillance is adjuvant chemotherapy with one cycle of carboplatin area under the curve (AUC) 7. The analysis of the large Medical Research Council/European Organization for Research and Treatment of Cancer (MRC/EORTC) trial, which compared adjuvant treatment with either radiation or one-cycle single-agent carboplatin AUC 7, revealed no significant difference in relapse rate, time to relapse, and survival after a median of 4-yr follow-up [EBM IB: 117]. The patterns of relapse differed [EBM IB: 117; EBM IIB: 118–120] (more retroperitoneal lymph node relapse with carboplatin vs. more pelvic lymph node relapse with adjuvant irradiation), but the ease of carboplatin administration, the shorter time to deliver adjuvant treatment, and the reduction of contralateral testis tumours (2 of 573 vs. 10 of 904 patients) could offer a clinical advantage of carboplatin over adjuvant radiotherapy.

6.3. Adjuvant radiotherapy

Another alternative to surveillance is adjuvant radiotherapy, resulting in a relapse rate of 3–4%. Almost all of these recurrences are located outside the irradiated area, mostly in the pelvis (1.7%) or close to the border of the radiation fields [EBM IB: 127,128, EBM IIA: 129,130]. The target volume of irradiation includes the infrahilar paraaortal/paracaval lymphatics [EBM IB: 127,128, EBM IIA: 129,130]. The upper and lower field margins are defined by the upper edge of the thoracic vertebra 11 and the lower edge of the lumbar vertebra 5. Ipsilateral to the primary tumour, the lateral field margin should be extended to the renal hilum; the contralateral margin has to include the processus transversus of the lumbar vertebrae. The total dose is 20 Gy, applied in single doses of 2.0 Gy each, five fractions per week, based on the results of the prospective randomized trial of the MRC, which compared 30 Gy with 20 Gy [EBM IB: 128]. The use of a linear accelerator is mandatory. An extension of the irradiation field to the ipsilateral iliacal, inguinal, or scrotal region in the event of prior testicular maldescensus, inguinal, or scrotal violations or pT3–4 primary tumours is probably not indicated, because there is no evidence for a different treatment outcome [EBM IIA: 26, EBM III: 131–132]. Limited target volume and doses of modern adjuvant radiotherapy have substantially reduced treatment-related side-effects, such as impairment of fertility owing to scatter radiation doses to the remaining testicle [EBM IB: 127; EBM IIB: 133]. Nevertheless, shielding of the contralateral testis is recommended [EBM IIA: 134]. Adjuvant radiation therapy may be associated with mild, acute side-effects (usually WHO grade I–II), predominantly in the form of gastrointestinal symptoms [EBM IIA: 130]. Relapse after radiation is nearly always located outside the radiation field [EBM IIB: 118, EBM IIA: 130, EBM IIB: 135,136]. Compared with no adjuvant treatment, there is a small risk of secondary malignancies after radiation therapy [EBM III: 137–139]. However, data are not yet available that quantify the risks of secondary malignancies when modern radiation techniques are applied with reduced doses and limited target volumes.

6.4. Summary of treatment of seminoma CS I

Taken together, all three treatment options for seminoma CS I result in a different relapse rate (3–4% for irradiation or adjuvant carboplatin vs. 13–20% for surveillance), but there is a final cure rate of nearly 100% if the first-line treatment approach and follow-up are applied properly.

7. Treatment of patients with non-seminoma CS I

If treatment is performed correctly, the cure rate of patients with non-seminoma CS I should be 99%,
regardless of the management chosen [EBM IIB: 67,140]. In the case of surveillance, the relapse rate is 27–30% when considering a long-term follow up of ≤20 yr [EBM IIB: 71,140]. Relapses occur in the retroperitoneum in 54–78% of patients, and in the lung in 13–31%, but are very rarely found in more than one visceral organ [EBM IB: 141, EBM IIB: 140, EBM III: 142].

VI of the primary tumour is the most important prognostic indicator for relapse. Patients with VI have a 48% risk of developing metastatic disease [EBM IB: 61, EBM IIB: 67], whereas only 14–22% of patients without VI will relapse [EBM IB: 61, EBM IIA: 63, EBM IIB: 64,71]. A risk-adapted strategy based on the presence or absence of VI is the recommended standard procedure [EBM IIB: 143] (Fig. 2).

Patients with a low risk of relapse (ie, no VI) should be managed by surveillance according to the MRC recommendations for follow-up, which require at least three CT scans performed at 0, 3, and 12 mo [EBM IB: 144]. With this approach 78–86% of patients do not need any further treatment after orchiectomy.

Fig. 2 – Treatment algorithm after orchiectomy according to individual risk factors in patients with non-seminoma clinical stage I. BEP, bleomycin, etoposide, cisplatin; CS, clinical stage; IGCCCG, International Germ Cell Cancer Collaborative Group; RLNPD, retroperitoneal lymph node dissection; VIP, vasoactive intestinal peptide.
[EBM IIA: 63; EBM IIB: 64,71]. If a patient under surveillance relapses, the administration of chemotherapy will result in a cure rate close to 100%. Only in circumstances not suitable for surveillance is adjuvant chemotherapy with two cycles of bleomycin, etoposide, and cisplatin (BEP) recommended. Nerve-sparing retroperitoneal lymph node dissection (RPLND) is an option at high-volume expert centers [EBM III: 145]. However, a randomized phase 3 trial of one-cycle BEP versus RPLND in 382 unstratified patients with CS I disease (plus adjuvant chemotherapy for those who would be pathological stage II after RPLND) suggested a significantly reduced recurrence rate using adjuvant BEP compared with surgery (1.1% vs. 7.5%, respectively) [EBM IB: 146]. These results have to be verified in a randomized phase 3 trial comparing one versus two cycles of BEP in high-risk patients with nonseminoma CS I. Such a study has been initiated by the German Testicular Cancer Study Group.

Patients with a high risk of relapse (ie, presence of VI) should receive adjuvant chemotherapy with two cycles of BEP. In special indications surveillance or RPLND is a possible alternative strategy to adjuvant chemotherapy, if proper conditions exist. By this approach 97% of patients will remain relapse-free, and the overall cure rate is >99% [EBM IIB: 67,147].

The disadvantage of adjuvant treatment in high-risk patients is that half of the patients who receive adjuvant BEP would not have required chemotherapy at all and may be unnecessarily exposed to the side-effects of chemotherapy [EBM IB: 148, EBM IIA: 149, EBM III: 150–155], a possible transient decrease in fertility [EBM III: 104,156–158], and possibly a small risk of secondary malignancies, as reported from patients receiving higher doses of chemotherapy [EBM III: 137–139,159]. However, surveillance in high-risk patients with a relapse rate of 48% exposes patients to psychological distress [EBM III: 126]. Relapses might be detected later, and subsequent treatment is more intensive compared with immediate adjuvant treatment. Nevertheless, if surveillance is carried out properly, >98% of these patients will still have a good prognosis and are cured by chemotherapy at the time of relapse. The negative predictive value of relapse can be predicted with 87% certainty if the proliferation rate of <70% and the percentage of VI < 50% are considered in addition to VI [EBM IB: 61].

In patients unwilling to undergo a surveillance strategy or adjuvant chemotherapy, a nerve-sparing lymphadenectomy (NS-RPLND) may be performed [EBM IIA: 160, EBM III: 161,162]. However, patients who choose NS-RPLND will be unnecessarily exposed to surgery in 50% of cases with the risk of surgery-associated side-effects [EBM IIB: 140], particularly, a 6–8% risk of retrograde ejaculation [EBM IIB: 140, EBM III: 163,164]. In addition, NS-RPLND does not completely eliminate the risk of recurrence, and relapses will occur in ~10% of cases, with almost all of these relapses outside of the retroperitoneum being located in the lungs. Late relapses are rare [EBM III: 125].

Conflicts of interest

The authors have nothing to disclose.

Acknowledgements

This consensus document was made possible by the input of the participants of the 2006 consensus conference who discussed and prepared this update of the 2002 consensus meeting.

All participants particularly like to thank Dr M. Pilar Laguna, Mrs Sonja van Rees Vellinga, and Karin Plass for organizing the meeting.

References

[42] Daugaard G, Rørth M, von der Maase H, Skakkebaek NE. Management of extragonadal germ cell tumors and the

[73] Moul JW, McCarthy WF, Fernandez EB, et al. Percentage of embryonal carcinoma and vascular invasion predict...

