The World Health Organization (WHO) released a new tumour classification for the genitourinary system in early 2016 after consensus by pathologists with expertise in these organs. It utilized the framework of the 2004 classification, and incorporated the most up-to-date information concerning these tumours. In testicular tumours, the majority of the changes occurred in the nomenclature and classification of germ cell tumours; however, several modifications were also made for non-germ cell tumours. Among sex cord–stromal tumours, the other forms of SCT. Similarly, the lipid cell variant is not separately classified, but is considered to be a morphological variant of SCT NOS. Large-cell calcifying SCT is recognized as a distinct entity that occurs either sporadically or in association with Carney complex, with the latter patients having a distinct germline PRKAR1A gene mutation. Intratubular large-cell hyalinizing Sertoli cell neoplasia is also accepted as a separate entity linked with Peutz–Jeghers syndrome. The subcategories of ‘mixed’ and ‘incompletely differentiated’ forms of sex cord/gonadal stromal tumours have been replaced by ‘mixed and unclassified sex cord–stromal tumours’. New entities introduced in the latest WHO revision include: myoid gonadal stromal tumour and ‘undifferentiated

The World Health Organization 2016 classification of testicular non-germ cell tumours: a review and update from the International Society of Urological Pathology Testis Consultation Panel

Muhammad T Idrees,1 Thomas M Ulbright,1 Esther Oliva,2 Robert H Young,2 Rodolfo Montironi,3 Lars Egevad,3 Daniel Berney,5 John R Srigley,6 Jonathan I Epstein,7 Satish K Tickoo8 & the Members of the International Society of Urological Pathology Testicular Tumour Panel*

1Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, 2Pathology Department, Massachusetts General Hospital, Boston, MA, USA, 3Department of Pathology, Università Politecnica delle Marche, Ancona, Italy, 4Department of Pathology, Karolinska University Hospital, Stockholm, Sweden, 5Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK, 6Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, 7Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, and 8Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

© 2016 John Wiley & Sons Ltd.

Address for correspondence: M Idrees, Department of Pathology, Indiana University School of Medicine, 350 West, 11th Street, Indianapolis, IN 46202, USA. e-mail: midrees@iupui.edu

* Brett Delahunt, Cristina Magi-Galluzzi, Ferran Algaba, Asli Yilmaz, Mahul B Amin, Eva Compérat, Ming Zhou, Peter A Humphrey, Antonio Lopez-Beltran, Joanna Perry-Keene, Clare Verrill and Sean R Williamson.
gonadal tissue', a putative precursor lesion of gonadoblastoma, whereas juvenile xanthogranuloma and haemangioma are included in the miscellaneous category of tumours.

Keywords: ISUP, non-germ cell tumours, testicular tumours, World Health Organization 2016 Classification

Introduction

The World Health Organization (WHO) held a consensus meeting in Zurich Switzerland in March 2015 to finalize the WHO ‘Classification of Tumours of the Urinary System and Male Genital Organs’. Prior to this meeting, a large group of pathologists from across the globe with expertise in the field communicated over several months to propose revisions to the 2004 WHO classification. The proposed revisions were collected as a baseline for the new classification and reference text. An expert subgroup of pathologists organized into four organ-based committees met in Zurich to discuss the proposed revisions, develop a consensus, and approve and finalize the new classification and text, which was published in the form of the familiar ‘Blue Book’ in January 2016. Several important changes were adopted for tumours of the testis and paratesticular tissues, mostly related to germ cell tumours, and less so for the other groups. This review will provide an overview of the non-germ cell tumours, and highlight the most important changes in the current classification as compared with the prior classification. During the last decade, relatively few changes were made in the nomenclature of non-germ cell tumours; however, new information has emerged that has led to a better understanding of their pathogenesis.

As in other organ systems, preliminary steps have been made towards a molecular-based classification, although much more additional work is required before a clinically useful one is in place for testicular tumours. Nonetheless, the WHO 2016 classification incorporated up-to-date molecular data, and the current WHO 2016 classification of non-germ cell tumours, presented in Table 1, is in part based on this information.

Sex cord–stromal tumours

Sex cord–stromal tumours are relatively uncommon, but represent the second largest group of primary testicular tumours (after germ cell tumours). Overall, they account for 4% of testicular tumours; however, the frequency increases to 8% in the paediatric population. Leydig cell tumour is the most common pure tumour in this category, followed by Sertoli cell tumour (SCT), granulosa cell tumour, and pure stromal tumour. However, in our experience, SCTs are more often seen in consultation practice, because of their relative unfamiliarity, more diverse morphological spectrum, and frequent lack of specific immunohistochemical markers.

Leydig cell tumour, historically also termed ‘interstitial cell tumour’, may present with hormonal manifestations, including gynaecomastia and, rarely, Cushing’s syndrome or isosexual pseudoprecocity puberty in children. These tumours occur over all age ranges, but have a lower frequency in children. Little is known about their pathogenesis, except a rare association with germline fumarate hydratase mutations in patients with hereditary leiomyomatosis and renal cell carcinoma syndrome, or activating mutations of the luteinizing hormone receptor in children. Another rare association is with Klinefelter syndrome; however, many of the reported cases in this context may represent ‘nodular’ Leydig cell hyperplasia, a common finding in Klinefelter patients. Most cases of Leydig cell tumour have diagnostic morphological findings, and do not require additional studies (Figure 1A–C).

If the morphology of Leydig cell tumour is unusual, especially when spindled or clear cell features are noted, immunohistochemistry may be helpful. Lack of nuclear β-catenin expression and strong inhibin staining support the diagnosis of Leydig cell tumour over SCT. A clinically important differential diagnostic consideration is testicular ‘tumour’ of the adrenogenital syndrome (TTAGS)/testicular adrenal rest tumour, which is considered to be an extreme form of nodular hyperplasia of testicular steroid cells that is induced by high circulating levels of adrenocorticotrophic hormone, and that typically does not require orchietomy and regresses following dexamethasone treatment. Helpful features that differentiate TTAGS from Leydig cell tumour include, in the former, bilaterality, prominent bands of collagen between nests of cells, abundant cytoplasmic lipofuscin pigment, spotty cytological atypia, a hormonal profile with high 17-hydroxyprogesterone and adrenal androgen levels, and frequent regression after
Immunohistochemical findings are also useful in that patients with TTAGS do not express androgen receptor, unlike those with Leydig cell tumour, and are more frequently positive for neuroendocrine markers (synaptophysin and CD56). As a small minority of Leydig cell tumours are clinically malignant, a thorough evaluation of morphological features associated with malignancy should be performed to ensure proper management of these tumours. Kim et al. proposed that two or more of the following features correlated with malignant potential: size > 50 mm, infiltrative borders, cytological atypia, three or more mitotic figures per 10 high-power fields, vascular invasion, and necrosis. Malignant Leydig cell tumours are resistant to currently available chemotherapy and radiotherapy, and have a poor prognosis if metastatic. No changes were made in the WHO 2016 classification related to Leydig cell tumours.

Sertoli cell tumours account for ~1% of all testicular neoplasms. Historically, approximately one-third of SCTs have been reported in children, although there is some controversy regarding the neoplasms in the paediatric age group, as many, in fact, may represent juvenile granulosa cell tumours. On rare occasions, SCTs develop in patients with androgen insensitivity syndrome. Although tubular architecture with nodular growth is the most distinctive feature of SCT, cords, nests, sheets and, rarely, single cells in a fibromatous/fibroblastic stroma may also be focally present or may represent the predominant pattern in some tumours. CTNNB1 gene mutations and immunohistochemical nuclear localization of β-catenin have recently been described as characteristic molecular alterations in approximately 60–70% of those SCTs in the ‘not otherwise specified’ (NOS) group. In the WHO 2004 classification, tumours considered as distinct forms of SCT included lipid-rich, sclerosing and large-cell calcifying types. In the current classification, lipid-rich SCT has been removed as medical therapy.

Table 1. World Health Organization (WHO) 2016 classification of non-germ cell tumours of the testis

<table>
<thead>
<tr>
<th>Sex cord–stromal tumours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure tumours</td>
</tr>
<tr>
<td>Leydig cell tumours</td>
</tr>
<tr>
<td>Malignant Leydig cell tumour</td>
</tr>
<tr>
<td>Sertoli cell tumour</td>
</tr>
<tr>
<td>Malignant Sertoli cell tumour</td>
</tr>
<tr>
<td>Large-cell calcifying Sertoli cell tumour</td>
</tr>
<tr>
<td>Intratubular large-cell hyalinizing Sertoli cell tumour</td>
</tr>
<tr>
<td>Granulosa cell tumour</td>
</tr>
<tr>
<td>Adult granulosa cell tumour</td>
</tr>
<tr>
<td>Juvenile granulosa cell tumour</td>
</tr>
<tr>
<td>Tumours in the fibroma-thecoma group</td>
</tr>
<tr>
<td>Mixed and unclassified sex cord–stromal tumours</td>
</tr>
<tr>
<td>Mixed sex cord–stromal tumour</td>
</tr>
<tr>
<td>Unclassified sex cord–stromal tumour</td>
</tr>
<tr>
<td>Tumour containing both germ cell and sex cord–stromal elements</td>
</tr>
<tr>
<td>Gonadoblastoma</td>
</tr>
<tr>
<td>Miscellaneous tumours of the testis</td>
</tr>
<tr>
<td>Ovarian epithelial–type tumours</td>
</tr>
<tr>
<td>Serous cystadenoma</td>
</tr>
<tr>
<td>Serous tumour of borderline malignancy</td>
</tr>
<tr>
<td>Serous cystadenocarcinoma</td>
</tr>
<tr>
<td>Mucinous cystadenoma</td>
</tr>
<tr>
<td>Mucinous borderline tumour</td>
</tr>
<tr>
<td>Mucinous cystadenocarcinoma</td>
</tr>
<tr>
<td>Endometrioid adenocarcinoma</td>
</tr>
<tr>
<td>Clear cell adenocarcinoma</td>
</tr>
<tr>
<td>Brenner tumour</td>
</tr>
<tr>
<td>Juvenile xanthogranuloma</td>
</tr>
<tr>
<td>Haemanglioma</td>
</tr>
<tr>
<td>Haematolymphoid tumours</td>
</tr>
<tr>
<td>Diffuse large B-cell lymphoma</td>
</tr>
<tr>
<td>Follicular lymphoma, NOS</td>
</tr>
<tr>
<td>Extranodal NK/T-cell lymphoma, nasal-type</td>
</tr>
</tbody>
</table>

© 2016 John Wiley & Sons Ltd, Histopathology
a separate entity, as it is now established that many SCTs contain variable proportions of lipid-rich cells. Although it is rare to find an SCT consisting entirely of lipid-rich Sertoli cells, the presence of any amount of lipid-rich cells is considered to be within the morphological spectrum of SCT NOS. A specific study investigating β-catenin expression or CTNNB1 gene mutations in lipid-rich SCT is not available; however, it is now known that many SCTs NOS (showing β-catenin expression) contain variable amounts of lipid.

Similarly, sclerosing SCT is not separately classified in the 2016 classification. A specific study investigating β-catenin expression or CTNNB1 gene mutations in lipid-rich SCT is not available; however, it is now known that many SCTs NOS (showing β-catenin expression) contain variable amounts of lipid.

Figure 1. A–D. Leydig cell tumour. A. Uniform nuclei with prominent nucleoli and abundant eosinophilic cytoplasm. B. Reinke crystals marked by arrows. C. Spindled cell morphology. D. Malignant Leydig cell tumour showing marked nuclear pleomorphism and prominent mitotic activity. E–K. Sertoli cell tumour. E. Low magnification of Sertoli cell not otherwise specified (NOS) shows a circumscribed margin and trabecular arrangement; the inset shows a trabecular and nested pattern. F. Characteristic appearance with solid architecture and nuclear palisades. G. Nuclear β-catenin. H. An example of a tumour that was previously termed ‘sclerosing Sertoli cell tumour’ but is now classified as ‘Sertoli cell tumour NOS’ with the notation of abundant stroma shows bland Sertoli cells forming tubules in a dense collagenous background. I. Malignant Sertoli cell tumour showing an invasive growth pattern, cellular pleomorphism, and areas of necrosis. J–K. Large-cell calcifying Sertoli cell tumour showing large eosinophilic cells in a fibromyxoid stroma and prominent calcifications. L. Intratubular large-cell hyalinizing Sertoli cell neoplasia showing intratubular neoplastic proliferation of large Sertoli cells with prominent deposits of extracellular basement membrane; strong inhibin expression can be seen on the right side.
which is characterized by familial occurrence, cardiac myxomas, and other features, although they more commonly occur sporadically. LCCSCT has a unique morphology, containing Sertoli cells with abundant eosinophilic cytoplasm and variable amounts of calcifications present in a myxoid, often neutrophil-rich background (Figure 1J,K). An intratubular component may be seen. Germline PRKAR1A gene mutations on chromosome 17q22–24 are seen in up to 70% of Carney complex-associated tumours, but have also been reported in sporadic cases.30,31

Intratubular large-cell hyalinizing Sertoli cell neoplasia is an intratubular neoplastic proliferation of large Sertoli cells with lightly eosinophilic cytoplasm and prominent extracellular basement membrane deposits. It has been recognized as a distinct entity associated with Peutz–Jeghers syndrome, with a characteristic mutation in the STK11 gene.32,33 Historically, these neoplasms have been considered within the morphological continuum of LCCSCT; however, they differ from LCCSCT in many respects, including: clinical presentation (often associated with gynaecomastia), almost exclusive intratubular growth, and specific germline mutations. They are multifocal, bilateral, and clinically benign.3 In the WHO 2016 classification, intratubular large-cell hyalinizing Sertoli cell neoplasia has been described as a separate entity under SGTs (Figure 1L).

The granulosa cell tumour category includes adult and juvenile variants, both of which have a morphological spectrum similar to that seen in their ovarian counterparts. Adult granulosa cell tumours are composed of small cells with pale nuclei, often showing grooves, that typically grow in sheets, microfolicles, nests, cords and trabeculae in a fibrocollagenous or oedematous background, whereas juvenile granulosa cell tumours usually show solid and follicular patterns with immature nuclei3 (Figure 2A,B). The former occurs in a broader age range, from teenagers to elderly individuals, whereas the latter is the most common tumour of the testis in the first 6 months of life, and is rare outside of childhood.3,34–36 No known epidemiological associations exist for adult granulosa cell tumours, but juvenile granulosa cell tumours may occur in cryptorchid testes or dysgenetic gonads.36–38

The tumours in the fibroma/thecoma group are derived from the testicular parenchymal stroma or that of the tunica albuginea. They are invariably benign, and no modifications were made in the WHO 2016 classification19 (Figure 2C).

The subgroups of ‘mixed forms’ and ‘incompletely differentiated’ under sex cord/gonadal stromal tumours of 2004 have been replaced by ‘mixed and unclassified sex cord–stromal tumours’, respectively, in the new WHO classification.3 The former is defined as showing two or more distinct forms of sex cord–stromal elements, whereas the latter shows indeterminate differentiation of the tumour cells (Figure 2D,E). These tumours may, on occasion, behave in a malignant fashion, with the morphological criteria employed for the assessment of malignancy in Sertoli and Leydig cell tumours being useful for judging malignant risk.26,40,41 Because malignant behaviour is not uniformly predictable with currently available methods, there are no separate benign and malignant categories, unlike in the WHO 2004 classification.

The myoid gonadal stromal tumour is considered to be an emerging entity in the WHO 2016 classification. It is composed of spindle-shaped/fusiform cells with features of both smooth muscle and gonadal stroma. To date, <10 examples have been reported in the English-language literature. They occur predominantly in middle-aged men, but show an age range of 4–49 years (median 41 years).42–44 They are usually circumscribed but unencapsulated and small (12–35 mm), and are often centred adjacent to the rete testis. The fusiform tumour cells are arranged in tightly packed, short fascicles. The nuclei are tapered and euchromatic, with inconspicuous to small nucleoli, and are surrounded by scant to moderate amounts of eosinophilic cytoplasm (Figure 2F). The background is collagenous, with variability in different fields and among different tumours. Interspersed small thin-walled vessels may be seen. Often, normal tubules are incorporated within the tumour, especially at the periphery. The tumours coexpress S100 and smooth muscle actin, and can be distinguished from fibroma and leiomymoma on the basis of morphology and S100 expression (Figure 2G). FOXL2, SF1 and weak expression of inhibin are noted in the majority of tumours.43 Reticulin staining may be helpful in distinguishing myoid gonadal stromal tumours from unclassified sex cord–stromal tumours, as the stain envelops groups of sex cord cells (which may be morphologically inconspicuous) in the latter.40

Tumour containing both germ cell and sex cord–stromal elements

Gonadoblastoma is the only entity in this category in the new classification. The entity of ‘germ cell–sex cord/gonadal stromal tumour, unclassified’ has been removed from the classification, as its existence is
debatable. Most, or perhaps all, of the cases reported in the literature lacked evidence of neoplastic germ cells, and they probably represented sex cord–stromal tumours with entrapped, non-neoplastic germ cells.45

In 1953, Scully introduced the term ‘gonadoblastoma’ to designate a steroid hormone-secreting gonadal tumour composed of germ cells and sex cord cells resembling immature granulosa or Sertoli cells (Figure 2H). In 1970, he published a series of 74 cases detailing its clinicopathological features.46 The characteristic feature of gonadoblastoma comprises discrete, round nests composed of germ cells, small sex cord cells resembling immature Sertoli or granulosa cells, and round deposits of basement membrane with occasional calcifications. There are variable arrangements of these elements in the cell nests. External to the nests there are cells similar to Leydig cells (but lacking Reinke crystals) or luteinized cells of ovarian stromal origin. Many of the germ cells resemble the cells of germinoma (dysexerminoma/seminoma), whereas others morphologically resemble spermatogonia. Left alone, gonadoblastoma will progress to dysgerminoma/seminoma in at least 50% of the cases, and into a non-seminoma tumour-type in another 8%.

A putative precursor lesion to gonadoblastoma, ‘undifferentiated gonadal tissue’, has been reported adjacent to gonadoblastomas and in dysgenetic gonads.47 This lesion consists of compressed cords of germ cells and sex cord cells in a stroma-rich...
background rather than the classic nested arrangement of gonadoblastoma\(^{46}\) (Figure 2I). The germ cells show the same immunophenotypic properties as those in the classic form of gonadoblastoma.\(^{47}\) Undifferentiated gonadal tissue is considered within the gonadoblastoma spectrum rather than as a distinct entity. It was recognized by Scully as a ‘dissecting’ or ‘infiltrating’ form of gonadoblastoma, emphasizing its mimicry of invasive dysgerminoma/semimoma, from which it must be distinguished.\(^{48}\)

Miscellaneous tumours of the testis

Ovarian epithelial-type tumours have been retained in the WHO 2016 classification under the above heading. This group includes tumours arising either from the testis or the paratestis, or resembling ovarian surface epithelial tumours. They include serous cystadenoma, serous tumour of borderline malignancy, serous cystadenocarcinoma, mucinous cystadenoma, mucinous borderline tumour, mucinous cystadenocarcinoma, endometrioid adenocarcinoma, clear cell adenocarcinoma, and Brenner tumour.\(^{49-56}\)

Serous borderline tumours are most frequent, followed by mucinous tumours. Unlike what is seen with carcinomas, no metastases or recurrences have been observed with the borderline tumours. In the current edition, carcinoid is not included in the miscellaneous category, but is classified with the germ cell tumours as a form of ‘monodermal teratoma’ of the prepubertal type.

Two other entities, juvenile xanthogranuloma (a histiocytic disorder of infants and young children) and haemangioma (a benign vascular tumour) are included under the miscellaneous tumours in the WHO 2016 classification.\(^{57-59}\) (Figure 2J-L). Few examples of juvenile xanthogranuloma of the testis exist in the English-language literature. It is debatable whether juvenile xanthogranuloma is a neoplastic disorder or not, but its potential to progress at other sites in some cases provides a rationale for placing it in the miscellaneous tumour category.\(^{60,61}\) It occurs in children aged <13 months, is composed of mononuclear histiocyte-like cells, and grows in a diffuse infiltrative pattern. Touton giant cells can be identified in some cases. The immunoprofile includes diffuse CD68 positivity and S100 and CD1a negativity.\(^{57,58,62}\) In testicular cases, surgical resection is curative. Testicular haemangiomas are rare, and occur in a wide age range, from infants to adults. The tumours are usually small (10–40 mm) and circumscribed. Cavernous, epithelioid, capillary and anastomosing types have been described. Immunostains, including those for CD31, FL1, and CD4, are helpful.\(^{59}\) The haemangiomas are invariably benign.

The last category, haematolymphoid tumours, contains various tumour types that may arise primarily in the testis/paratestis.\(^{63-74}\) The scope of this article does not allow their discussion here.

In summary, the largest group of tumours in the non-germ cell tumour category is represented by the sex cord–stromal tumours, which represent 5% of all testicular tumours. Among the sex cord–stromal tumours, Leydig cell tumours predominate, followed by SCTs. Although the WHO 2016 classification retains the main framework of non-germ cell tumours of the testis from the 2004 classification, significant additions/alterations are seen in the classification of these tumours, primarily based on additional information and knowledge gained since the publication of the previous edition.

Acknowledgements

The ISUP conference was generously supported by Orchid.

References

Non-germ cell tumours of testis 9