Urethral strictures

Anthony R. Mundy and Daniela E. Andrich
Institute of Urology, London, UK

Accepted for publication 17 June 2010

What's known on the subject? and What does the study add?
Urethral strictures are common and increasingly common in an ageing population. The treatment is controversial and particularly the relative roles of urethrotomy or urethral dilatation on the one hand and urethroplasty on the other. This review aims to provide a comprehensive overview of the subject including less commonly discussed issues such as the history and pathology of stricture disease.

We would hope that a comprehensive overview of the subject will give a sharper perspective to aid the investigation and management of patients with urethral strictures.

KEYWORDS anterior urethra, review, urethral strictures, urethroplasty

INTRODUCTION
A urethral stricture is a scar of the subepithelial tissue of the corpus spongiosum that constricts the urethral lumen. As the constriction progresses, obstruction develops and leads to symptoms either directly related to the obstruction or as a secondary consequence. By consensus, the term stricture is applied only to constrictions of the anterior urethra, which is that part surrounded by the corpus spongiosum and that runs from its origin from the membranous urethra at the level of the perineal membrane to the external urinary meatus [1]. Elsewhere in the urethra the terms stenosis or contracture are preferred.

INCIDENCE
Urethral strictures are common and always have been. Dilatation was described by Shusruta >600 years BC [2]; 19th century expert opinion had it that 15–20% of adult men had a stricture [3]; and in the 21st century in the UK NHS >16 000 men require admission to hospital each year because of urethral stricture disease and >12 000 of them need an operation at an annual cost of £10 million [4,5]. The estimated prevalence in the UK is >10/100 000 men in their youth rising to about 20/100 000 by the age of 55 years then to 40/100 000 by the age of 65 years and to over 100/100 000 thereafter [6] (Fig. 1). Still higher rates have been reported from the USA [7].

AETIOLOGY (Table 1)
Historically strictures were more or less associated with gonococcal urethritis excepting a few cases due to trauma [8]. But, a stricture was rarely due to a single infection; it was much more commonly due to chronic or recurrent infection over many years, the average onset of symptoms of a stricture being >20 years after the initial attack of gonorrhoea [8]. An alternative explanation, of course, is that it takes 20 years for a stricture to develop after a single episode of untreated gonorrhoea. In the developed world, gonococcal strictures are rare and most strictures today are either iatrogenic or idiopathic [9,10]. Iatrogenic causes include urethral catheterization, cystoscopy, TURP and surgery for hypospadias. Idiopathic strictures include those occurring at any age and at any site where the cause is not known, and those short sharp strictures that occur in adolescents and young adults at the junction of the proximal and middle thirds of the bulbocavernosus (Fig. 2), which some think are congenital [11,12] (possibly due to incomplete rupture of the urogenital membrane and related to what is called Cobb’s collar [13] by some and Moorman’s ring [14] by others).
The cause is linked to the patient’s age and to the site of the stricture. Meatal strictures may be due to ammoniacal dermatitis in the very young, lichen sclerosus (LS) in the adolescent and young adult, and instrumentation or poor hygiene [15] at any age. Previous surgery for hypospadias is another cause. Hypospadias surgery is increasingly common and so are its complications, including a stricture at the site of surgery [16,17]. This may be apparent shortly after the surgery but may not present until adolescent or early adult life [18].

LS is also increasingly common. It was barely recognized 40 years ago [19] but is now the commonest identifiable cause of penile strictures in young and middle-aged adults. As a cause of stricture disease, it starts at the meatus and may then spread proximally up the penile (pendulous) urethra. Strictures in this segment are otherwise uncommon and tend to follow catheterization, affecting the bulbo-penicile junction primarily, or are idiopathic affecting the mid-segment.

The bulbar urethra is that part of the urethra enclosed by the bulbospongious muscle and is the commonest site for a stricture. Idiopathic strictures tend to occur in adolescent and young adults as discussed above. Iatrogenic strictures occur at any age and are typically found at the junction of the bulbar and penile urethra after catheterization [Fig. 3], as described in the last paragraph, or in the proximal bulbar urethra, commonly involving the membranous urethra and urethral sphincter mechanism, after TURP (so called ‘sphincter strictures’) [20] (Fig. 4). TURP is a less common cause of strictures than it was [21,22] because it is performed less frequently and with better instruments, but new technology also involves instrumentation and can also cause stricture disease. During the course of a TURP, it has been estimated that the instrument moves up and down within the urethra some 800 times [22]!

Ischaemia is a common underlying cause or predisposing factor in stricture disease but rarely referred to as such. Catheter strictures are a classic example. Occurring, as they commonly do, at the natural curve of the anterior urethra, they have been described as ‘pressure sores’ of the urethra [23], although

TABLE 1 Stricture aetiology and prevalence

<table>
<thead>
<tr>
<th>Site</th>
<th>Cause</th>
<th>Incidence, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penile</td>
<td>Idiopathic</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Iatrogenic</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Inflammatory</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Traumatic</td>
<td>5</td>
</tr>
<tr>
<td>Bulbar</td>
<td>Idiopathic</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Iatrogenic</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Inflammatory</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Traumatic</td>
<td>15</td>
</tr>
</tbody>
</table>

FIG. 1. The incidence of strictures by age. Data taken from McMillan et al. (1994) [6].

FIG. 2. A typical idiopathic stricture of the bulbar urethra, short, sharp and at the junction of the proximal and middle thirds, putatively congenital.

FIG. 3. A typical post-catheterization stricture of the distal bulbar and proximal penile urethra.

FIG. 4. A typical post-TURP ‘sphincter stricture’ of the proximal bulbar and membranous urethra. The bladder neck is wide open as a consequence of the TURP.
the trauma of catheterization is another factor [24], as is leaching of toxic compounds from the catheter itself when latex has been used in its manufacture [25]. Anecdotally, strictures seem to be more common in smokers and smoking also seems to affect adversely the outcome of urethroplasty [26]. This ischaemia seems to be a consequence of microvascular disease, as in diabetes, rather than peripheral or central vascular disease [26].

PATHOLOGY

Excepting trauma or otherwise when the urethral lumen is obliterated, the characteristic feature of a stricture is replacement of the corpus spongiosum deep to the urethral epithelium by dense fibrous tissue due to local thrombophlebitis. The epithelium itself is usually intact, albeit abnormal [8,27] (Fig. 5). The pathogenesis of stricture disease has not been widely studied and when it has been studied it has principally been with infection as the cause [28], although animal models do exist [29,30] particularly using electrocoagulation trauma to the rabbit urethra as a model of iatrogenic injury. The importance of urinary extravasation into the corpus spongiosum is stressed by all and the worse the extravasation, the worse the fibrosis [30,31]. The location of the urethral glands coincides well with the site of incidence of infection-related strictures implicating these as a cause [31]. However, the only study of the pathogenesis of stricture disease that the authors are aware of shows that the primary change is metaplasia of the urethral epithelium from its normal pseudo-stratified columnar type to stratified squamous epithelium [32] (Fig. 6). This is a more fragile epithelium, which therefore tends to split when distended during voiding. These fissures or ulcers in the epithelium lead to focal extravasation of urine on voiding that leads in turn to subepithelial fibrosis. Microscopic foci of fibrosis form and coalesce over a period of years to form macroscopic plaques, which may then constrict the urethra if they coalesce around the circumference of the urethra to form a complete ring. In this model of stricture formation, bacterial infection may induce the squamous metaplasia, as may several other factors: chemical, physical or biological, but it is not necessary for the further development of the stricture (Fig. 7).

Metaplastic change also occurs proximal to a definitive stricture, due to chronic distension under pressure during voiding, giving the epithelium a so-called 'wash leather' appearance. This type of metaplasia may be reversible once the obstruction is relieved but reversibility or otherwise cannot be determined at the time of surgery.

More recent studies have investigated the pathology at a molecular level and it seems that the fibrosis in strictures is not the same as in wound healing elsewhere [33,34].

‘fibrosis in strictures is not the same as in wound healing elsewhere’
Specifically, there is an unusually high proportion of type 1 collagen compared with type 3, which usually predominates in a scar [33]. Not surprisingly, this is more marked in the subepithelial part of a stricture than more peripherally. It is also more marked in traumatic strictures than non-traumatic strictures [34], in which there is often surprisingly high smooth muscle content [31]. It also seems possible that this process of spongiofibrosis might be induced by damage to neural nitric oxide synthase-carrying nerves [35] or by the over-expression of connective tissue growth factor, which has been identified as a cause of other fibrotic diseases [36].

The pathology of LS is different [37,38]. It used to be called balanitis xerotica obliterans and is still commonly known as this and especially by its initialism BXO. It is an atrophic rather than a proliferative fibrosis (Fig. 8) with features suggesting an autoimmune cause, although an infective aetiology has been proposed [39]. It typically starts as an itchy patch of white discolouration on the inner aspect of the foreskin or glans. Patches eventually coalesce and the affected skin becomes inelastic and brittle so that it splits and becomes sore rather than itchy. Scarring of the glans and the prepuce commonly causes dense adhesions between the two making circumcision difficult if not impossible. However, if the disease affects only the foreskin and the glans, circumcision is curative in >90% of patients [40]. In more severely affected patients, there is loss of the normal glans contour and of the coronal sulcus, meatal regression and penile oedema (Fig. 9). Scarring around the meatus causes meatal stenosis that can spread proximally to involve the fossa navicularis and then the penile urethra causing it to be strictured and palpably thickened (Fig. 10). It can affect the bulbar urethra as well but only rarely.

Complications from high voiding pressure and chronic or recurrent infection will ultimately develop if the stricture remains untreated, initially in the lower urinary tract, causing a thick-walled, trabeculated, sacculated bladder with prostatitis, epididymo-orchitis and bladder stones (Fig. 11), and ultimately in the upper urinary tract and kidneys as well, leading to bilateral hydroureteronephrosis [8,41] (Table 2).

The natural history of the untreated disease was described in detail in texts from the 18th and 19th centuries [e.g. [3,42]]. With progressive obstruction of the urethra there will eventually be periurethral abscess formation and urinary extravasation leading ultimately to fistulation through to the skin and, the so-called ‘watering can perineum’ (Fig. 12). Although acute retention is common, complete obstruction leading to rupture of the acutely retented bladder and death is not. Chronic fistulation through to the skin, recurrent sepsis and bladder stones associated with obstructive uropathy, and then obstructive nephropathy and renal failure are outcomes that are more common in the untreated patient.
FIG. 9. The clinical appearance of LS: (a) a white rim to the meatus (pathognomonic); (b) loss of the normal contour of the glans and the coronal sulcus and meatal regression in a circumcised patient; (c) fusion of the foreskin to the glans in an uncircumcised patient; and (d) as with (c) but with oedema and ulceration of the glans.

FIG. 10. The typical appearance of a penile urethral stricture in a patient with LS, typical but not pathognomonic.

With traditional treatment by urethral dilatation, the urethral lumen may be maintained but at the expense of extending the stricture longitudinally along the length of the urethra with recurrent bleeding, recurrent sepsis and increasingly difficult dilatation with time [43]. Patients tended to become critically dependent on the particular surgeon/urologist who dilated their strictures and who ‘knew his way through’. Septicaemia after dilatation was the main risk in treated patients and so the single greatest development in the 20th century for them was the development of antibiotics to reduce the incidence and mortality of these septic episodes.
Today, such an outcome is less common in the developed world than it was but is still seen more commonly than it should be and reflects an uncritical overuse of dilatation. It is more common where medical care is lacking, for more understandable reasons.

CLINICAL EVALUATION

Most patients present with progressive symptoms of lower urinary tract obstruction:

- hesitancy
- a poor stream
- terminal dribbling
- and a feeling of incomplete emptying.

The strongest association of any of these symptoms with stricture disease is a sensation of incomplete emptying. Occasionally, patients present with acute retention, more commonly with haematuria, and more commonly still with UTI. Even so 70% present with obstructive symptoms alone. Symptomatic assessment is best formalized using a questionnaire such as the AUA symptom index [44] or, better still, a specifically designed Patient Reported Outcome Measure (PROMs) which is in development in the UK at present.

Physical examination is usually unrewarding unless there is a history of disease or surgery because only the meatus can be seen and because strictures are not usually palpable. Nonetheless, the penis should always be carefully examined for signs of LS, which may be very slight and confined just to whiteness around the margins of the urethral meatus (Fig. 9a).

A urinary flow rate study may be diagnostic. The long slow protracted flow pattern with a plateau appearance in a man aged <65 years is typical (Fig. 13). The combination of a flow rate study and the AUA symptom score in a man with a known urethral stricture can help to direct treatment in an untreated patient and to detect a recurrent stricture in a treated patient [45,46].

Ultrasoundography is useful to identify a thick-walled bladder before voiding and residual urine afterwards, both indicating long-standing obstruction [8]. If either of these is present, hydronephrosis may be found. This tends to disappear after voiding and can be missed if the kidneys are only scanned after voiding.

If symptoms and a urinary flow rate study suggest a urethral stricture, a retrograde urethrogram is the next step to make the definitive diagnosis of a stricture, as distinct from any other cause of obstructed voiding. This should show the full length of the urethra up to the stricture and past it through the urethral sphincter, prostatic urethra and bladder neck and into the bladder [47] (Figs 2–4,10,11). If a good quality image of the full length of the urethra in a patient tilted well laterally is not obtained then a voiding cystogram should be performed to show the urethra proximal to the stricture. The authors always ask for both to be sure of getting good images and to look for significant distension of the proximal urethra above the level of the stricture on voiding, indicating significant obstruction.

Many patients with LUTS have cystoscopy as the means of definitive diagnosis. This may confirm the diagnosis of a stricture; and indeed flexible cystoscopy at the time of the initial consultation may speed up the process of diagnosis and treatment significantly. Unfortunately, endoscopy does not show the length of the stricture or the state of the urethra proximal to the stricture, unless it is opened up first. However, there are many urologists who think that a urethrogram is not necessary before deciding upon treatment, mainly because they are going to do a urethrotomy anyway. This is not the authors’ view. Urethrography gives a more complete assessment.

Some urologists find ultrasonographic assessment of a stricture helpful [48] and few would argue that the images of a stricture in the distal bulb and penile urethra are impressive. Unfortunately, most strictures are in the more proximal bulb urethra where the urethra is curving upwards into the pelvis, away from the skin and so away from the ultrasound probe and where ultrasonography is therefore at the limit of its usefulness.

TREATMENT

In the absence of complications, treatment is for symptoms and if the symptoms are not particularly troublesome, treatment is...
unnecessary. If urinary infection has been troublesome or the patient has presented with acute retention then treatment reduces the risk of further complications. The authors’ (anecdotal) experience is that if the flow rate is >10 mL/s, symptoms are not usually very troublesome and complications are unusual; if it is 5–10 mL/s then urinary infection is more common but in the absence of infection, symptoms may still not be very troublesome; and it is only when the flow rate is <5 mL/s that symptoms are particularly troublesome and that urinary infection and acute retention are a real risk in otherwise unsusceptible individuals.

It has been known for centuries that in an acute inflammatory episode, ‘resting’ the urethra with suprapubic catheter drainage will allow the situation to improve, sometimes considerably (Fig. 14). For this reason, it is sensible to allow for this before definitive treatment by whatever means.

TREATMENT BY INSTRUMENTATION

(Table 3)

The traditional treatment for urethral stricture has been urethral dilatation for the last 3000 years and direct vision internal urethrotomy (DVIU) for the last 40 years. The advantage of endoscopic diagnosis with a rigid cystoscope is that the surgeon can proceed directly to DVIU immediately. This is perfectly reasonable in a patient presenting for the first time with a short stricture in the bulbous urethra, as about half of such patients will be cured in this way. However, if the stricture is at any other site or if there has been previous DVIU or dilatation and the stricture has recurred then instrumentation will almost certainly fail to cure the patient [49–51]. Management by palliation is perfectly acceptable, of course, as long as the patient and the surgeon appreciate that it is palliation, but most patients want a cure. For this reason, patients should be counselled that it might be more ‘cost effective’ to go straight to primary urethroplasty [52] and so

FIG. 14. The effect of resting an acutely inflamed urethral stricture: urethrography (a) before and (b) after.
it is sensible to organize a urethrogram before planning treatment.

Nonetheless, many patients will opt for DVIU because it seems more minor, particularly if they are encouraged in that view by their medical advisor, and many might prefer palliation or might be more suited to palliation particularly if it is only required occasionally, no more frequently than once a year. There is no evidence that DVIU is any better than dilatation [50], although intuitively many surgeons feel it is. Equally, although there is no evidence to support it, it would seem sensible intuitively to dilate post-

FIG. 15. Endoscopic photograph of a DVIU through a stricture (with an associated false passage) with a fine ureteric catheter (as an alternative to a guidewire) through the stricture to show the way.

FIG. 16. Retrograde urethrogram 3 months after a single DVIU, when a guidewire was not used.

FIG. 17. A failed UroLume stent in the bulbar urethra: (a) radiologically and (b) after excision at operation.

suggestions that keeping a catheter for 3 days after urethrotomy reduces the risk of early postoperative extravasation and infective complications [55]. Clearly both of these complications are more likely when the procedure is more than usually traumatic, which is all too common. Today, in the UK, this usually occurs when DVIU is attempted without passing a guidewire first. It is frighteningly easy to lose sight of the lumen (Fig. 16).

If a stricture is going to recur, it is usually apparent symptomatically within 6 months or a year at most [56]. There is no data on the timing of detectable recurrence of a stricture by any objective means.

Self-catheterization has been popularized to reduce the risk of recurrent stricture disease after urethrotomy or dilatation. It is, of course, continuing dilatation by another name. There is some long-term follow-up data to support this contention [57,58], but there is also evidence that it does not significantly reduce the risk of hospitalization and the need for ‘surgical’ dilatation or urethrotomy to deal with recurrent strictures [59]. In any case, many patients simply stop using it because of the sheer inconvenience for whom the ability to self-catheterize may be essential because medical support is lacking.

The other treatment that has been used to supplement urethrotomy has been the placement of an intraurethral stent. There are two types:

- the Wallstent or UroLume® (Pfizer Inc., UK) [61] which is incorporated into the urethral wall;
- and the Memokath® (Engineers & Doctors A/S Ltd., Hornbaek, Denmark) [62] which is not.

Much the most reported experience is with the UroLume. After the initial flurry of enthusiasm [63,64], more sober assessment suggests that in ‘easy’ strictures of the bulbar urethra the results may be satisfactory but otherwise the results are poor [65] and recurrent structuring (Fig. 17) often requires a

‘Both DVIU and dilatation should be covered by prophylactic antibiotics’
difficult urethroplasty to salvage the situation when a straightforward procedure would have given a perfectly satisfactory result if used initially [66,67]. If a suitable stent could be found that could treat ‘easy’ strictures in ‘difficult’ patients, those with serious comorbidities, then stenting may find a place in our armamentarium, particularly if the stents were biodegradable [68] to reduce the incidence of long-term side-effects.

For most patients for whom urethrotomy or dilatation are inappropriate, or in whom it has failed, urethroplasty is usually the only curative option and most authors feel there is no point in performing more than one urethrotomy before recommending a urethroplasty [52,59,69,70]. However, some patients at the extreme end of the spectrum of stricture disease, typically patients who have had repeated failed surgery, particularly when complicated by comorbidity, might prefer a perineal urethrostomy or indeed would rather avoid further surgical intervention and opt a suprapubic catheter [71].

TREATMENT BY URETHROPLASTY

The development of urethroplasty

The earliest form of open stricture surgery was ‘perineal section’ [72]. This was in the days when peri-urethral abscess formation, extravasation and fistulation were common, indeed it might be the only way of passing urine in extremis and therefore a matter of life and death if dilatation proved impossible [73]. Otherwise, if acute retention developed, survival depended on a surgeon cutting down through the fistulous mass, trying to find the proximal urethra and so relieve the retention. This was often extremely difficult and often required several attempts. The French called this procedure la boutonierre [74]. Opening up the urethra distal to the obstruction was guided by cutting on to a dilator or ‘staff’ within the urethra. Once the urethra on either side of the obstruction was opened up widely, the wound was left open to discharge urine and infection. Then, gradually, urethral voiding would be re-established between the two cut ends of the urethra, in most if not all patients, and the perineal wound would heal [75]. The whole process was helped by the regular passage of a urethral dilator.

In the late 19th century and early 20th century, incision of the stricture and its associated peri-urethral fibrotic mass was made easier with the development of anaesthesia, and came eventually to be replaced by excision, but with no intention of bringing the two ends of the urethra together [76]. Again the wound was left open to heal by second intention but now a catheter was left in for a few days postoperatively, transurethrally or, more commonly, transperineally, to allow the perineal wound to heal more quickly. Interval dilatation would then follow after the catheter was removed; there was never any expectation that the excision was curative.

By the turn of the 19th–20th century there were the first reports of excision of a stricture with suturing of the two ends of the urethra together [77,78] (Fig. 18). The patient was managed thereafter as previously. At this time, some surgeons were beginning to suggest that excision might be curative.
By the mid-20th century surgeons had learnt that a strip of buried epithelium would convert itself into a tube if it was open at both ends [79] (Fig. 19) and Johanson [80] devised a form of urethroplasty based on this principle (Fig. 20). Dennis Browne [81] used the same principle for hypospadias repair (Fig. 21). In both instances, the surgery was staged. In the first stage, the diseased urethra was marsupialized, leaving a wide-open urethrostomy proximally to void through during the interim. Then, at the second stage, a neo-urethral strip was created ≈1.5 cm wide, consisting of the residual native urethra together with the adjacent skin that had been sutured to it, which ran from the urethrostomy proximally to the healthy distal urethra or to the meatus, depending on the location and the length of the stricture. This would become the new urethra. The skin on either side of the strip was widely undermined to allow it to be brought together comfortably over the now buried skin strip and an indwelling catheter. After 2–3 weeks, the neo-urethra would be formed and the catheter was removed. Many patients did well, particularly when compared with how they would have fared otherwise, but fistulation and sacculation were common. In the 1960s and 1970s, the buried skin-strip principle was replaced by a second stage in which the neo-urethral strip was rolled up to form a tube instead with much more satisfactory results [82]. Similarly the practice of excision of the stricture and anastomosis of the two ends dorsally but leaving the ventral aspect open was replaced by the use of a skin flap to close the ventral defect primarily [83]. It was then a short step to perform either excision of the stricture and hemi-circumferential anastomosis, for shorter strictures; or stricturotomy, instead of marsupialization, for longer strictures and then to go on to close...
the urethra with a skin flap primarily and so complete all urethroplasties in one stage [84]. By such a series of historical steps we come to the present day in which staging is used as a last resort; marsupialization as a salvage procedure; and the buried skin-strip procedure not all.

Contemporary urethroplasty

All modern surgery is either based on excision of the stricture and then restoration of continuity by a spatulated, overlapping end-to-end anastomosis when this is possible or reconstruction of the urethra by the use of grafts or flaps when it is not. Until recently, most graft repairs of urethral strictures used penile shaft skin [85]. This developed from the use of full-thickness grafts of foreskin for hypospadias repair [86]. Split-thickness grafts ‘take’ well but contract, which make them unsuitable for urethroplasty. Full-thickness grafts do not contract because of the presence of a critical volume of dermal collagen, and if the skin is thin and the subdermal plexus is dense then ‘take’ is good as long as the graft is kept still and free of haemolytic streptococcal infection during healing, both of which would prevent revascularization by the normal processes of imbibition and inosculation [87]. The problem is that they are fastidious and have to be prepared carefully, which takes time. The re-discovery of the buccal mucosal graft (BMG) in 1992 [88,89] was a big step forwards because buccal mucosa has a pan-dermal plexus [90] (Fig. 22), as well as other attributes [91], which makes it less fastidious and therefore much quicker to harvest and prepare and just as good in everyday use.

Intuitively it used to be thought that skin flaps must be better than skin grafts because flaps carry their own blood supply with them whereas grafts have to be transferred without a blood supply and then must re-establish a blood supply at the recipient site. Again, hypospadias surgery was the driver for the development and use of penile skin flap surgery for urethral strictures [92–95]. However, meta-analysis showed that there is no difference between a graft and a flap in the cure rate of the stricture [96] and so considerations of donor-site morbidity, local genital skin scarring and the time taken to perform a procedure all become relevant. There are still advantages in using a flap particularly where there is dense scarring or poor blood supply to the local tissues, typically after previous surgery or radiotherapy [69]. For all other purposes grafts, and specifically BMGs, have replaced flaps for bulbar urethral surgery. In the penile urethra the penile skin

FIG. 21. The Denis Browne procedure: the application of the buried skin-strip principle to hypospadias. Reproduced from Browne (1949) [81].

FIG. 22. Diagrammatic cross-section of (a) skin to show the intradermal and subdermal vascular plexuses and (b) buccal mucosa to show the pandermal plexus. Courtesy of Dr G. H. Jordan, Norfolk, Virginia, USA.
of the urethra sutured to the other side of the urethra to close it.

pedicle developed; (incision through skin and dartos (solid line) and through skin alone (dotted line); (FIG. 23. The Orandi procedure for a simple penile urethral stricture; the original flap repair: (a) the skin incision through skin and dartos (solid line) and through skin alone (dotted line); (b) the dartos vascular pedicle developed; (c) the leading edge of the skin paddle sutured to the urethra; and (d) the following edge of the urethra sutured to the other side of the urethra to close it.

flap attributed to Orandi [84] (Fig. 23) is still useful for uncomplicated strictures but these are relatively uncommon. Grafts are more commonly used for salvage hypospadias surgery to avoid further scarring of the penile skin, which is in any case often deficient. LS is a disease of genital skin and so BMGs give much better results [40,97].

Thus for bulbar strictures that are too long for an excision and end-to-end anastomosis a BMG will generally be used in a ‘stricturotomy and patch’ procedure, and a flap repair is reserved for revisional surgery. Even then, some surgeons would simply re-graft. Flap repairs of the bulbar urethra are rare today [98]. For penile urethral surgery, an Orandi skin flap might well be used, except in LS, but some would now prefer a dorsal stricturotomy and BMG or a trans-ventral dorsal inlay of a BMG [99]. For LS and hypospadias salvage a one-stage repair with a BMG would be best for more limited or straightforward problems of the glanular urethra and a two-stage repair with a BMG reserved for more extensive problems involving the penile shaft and more proximally.

General considerations

There are several different types of urethroplasty but essentially the type that is used for any particular stricture depends on its length, the nature of the underlying problem and whether or not there has been previous surgery. The length is the main consideration [69]. Previous surgery may reduce the type of tissue that is available for a repair and the nature of the disease may suggest that only certain types of tissue are suitable for a repair. Specifically urethroplasty using local skin flaps may not be possible after repeated surgery for hypospadias, and LS is a disease of genital skin and so genital skin should not be used for urethroplasty in such patients [40,97].

Length is important because most strictures arise in the bulbar urethra and the bulbar urethra can stretch (up to a point) perhaps to as much as 150% of its natural length. Thus a short stricture can be excised and the urethra reconstructed by a spatulated, overlapping end-to-end anastomosis (Fig. 24), spatulated and overlapping to give an anastomosis of sufficiently large calibre so that even with the expected degree of contraction with healing the calibre of the urethral lumen remains satisfactory. A longer stricture may not allow this without tension but may allow a semi-circumferential anastomosis and patching of the other half of the circumference of the repair with a graft or flap (Fig. 25). Longer still and the limit of ‘stretchability’ is exceeded and an excision is not possible without a complete circumferential reconstruction to replace that segment. Most bulbar strictures do not require such a radical approach that, in any case, needs usually to be staged. Long bulbar strictures are usually best treated by a stricturotomy to open up the narrowed urethra and then patching with a graft or flap to restore both the integrity of the urethra and its calibre (Fig. 26), which gives better results than an excision and circumferential repair, and in a single stage [69,100].

In the penile urethra, excision and end-to-end anastomosis is not possible without causing significant buckling of the penis at rest, let alone on erection, so this is not an option. The two alternatives are a ‘stricturotomy and patch’ in less severe circumstances or an excision and circumferential reconstruction when the fibrosis is severe. This is usually only necessary for LS or, less frequently, in hypospadias-related strictures or rare other conditions.

‘LS is a disease of genital skin and so genital skin should not be used for urethroplasty in such patients’

BULBAR URETHROPLASTY (Fig. 27)

The most common urethroplasty is for a bulbar stricture [4,7,9,10,69,98] and there is now good evidence that if a patients has failed to respond to one urethrotomy or dilatation the most cost-effective way forwards and the only good chance of a cure is by urethroplasty [52,59]. Today, most commonly, that means a ‘stricturotomy and patch’ using a BMG (Fig. 26), as the average length of a stricture in those patients who come to surgery is (reported to be) 5 cm [98], although the authors believe this to be an exaggeration, 2 cm is probably more accurate.
Intuitively excision and end-to-end anastomosis (Fig. 24) should be best for patients with shorter strictures in whom this is possible because the diseased segment is excised and two healthy ends are joined together. Indeed, current evidence suggests that in the short- to medium-term it is true that anastomotic repairs do better than ‘stricturotomy and patch’ repairs, although this is debatable [98], but the data are not strictly comparable [101]. Furthermore there is a growing feeling that transecting the urethra, inevitable in anastomotic urethroplasty as currently performed, may interfere with the blood supply of the corpus spongiosum such that a non-transecting approach like a ‘stricturotomy and patch’ or some novel approach to anastomotic repair may be better in the long term [102].

Historical data is important to determine the long-term outcome of urethroplasty but may be misleading because, e.g. strictures tended to be much worse then than they are now when a more limited approach is possible in many cases [101]. Further debate today surrounds points of detail such as whether buccal mucosa is any better than labial mucosa or lingual mucosa [103]; or whether dorsal patching is any better than ventral patching [104,105], or indeed, lateral patching [106]. Concentration on these levels of detail attests to the widespread acceptance of the principle of ‘stricturotomy and patch’ urethroplasty of the bulbar urethra with oral mucosa of one sort or another.

The success rate of bulbar urethroplasty is high. Overall, it is generally reported to be ≈85% [98], although with some contemporary series this is rather better at 95% [107]. But, this is the urologists view
FIG. 25. The augmented anastomotic repair. The stricture has been excised and both ends spatulated dorsally. A BMG has been harvested and quilted to the tunica albuginea of the penis (1). The proximal spatulated end of the urethra is beginning to be sutured to the proximal end of the BMG (2). The distal spatulated end of the urethra is retracted with a bulldog clamp (3). When the proximal part of the anastomosis is complete (4), the distal half is sutured, shown here half-finished (5).

and not necessarily the patients view. Unfortunately, there is little or no correlation between the criteria used by the urologist and those used by the patient. The urologist concentrates on voiding efficiency. The patient is much more concerned with cosmetic effects and adverse effects on sexual performance [108]. Equally, the criteria that urologists use vary greatly. In general, however sophisticated the diagnostic assessment preoperatively, postoperative success or failure in most publications is based simply on whether or not the patient requires further intervention and even then ‘one dilatation’ is regarded as perfectly acceptable [98]. However, where studied, the evidence suggests that urethroplasty has no adverse effect on sex drive, erection and ejaculation in the long term although these may take up to a year to recover [109].

PENILE URETHROPLASTY (Fig. 28)

Penile urethral strictures are different. The principles have been outlined above. The Orandi patch (Fig. 23) for an uncomplicated penile stricture does well. Unfortunately, strictures as a consequence of hypospadias surgery and LS are more common. Each has its problems. LS varies from being a highly aggressive and extensive inflammatory disease of the penis and anterior urethra to being a burnt out condition affecting just the meatus and surrounding glans [40]. Hypospadias-related strictures may also be a simple stenosis of a recessed meatus in an otherwise relatively normal penis. On the other hand, there can be extensive fibrosis after multiple previous procedures, a shallow glans cleft, a small ventrally tilted glans, chordee, an underdeveloped corpus spongiosum and thin ventral shaft skin poorly supported by the subcutaneous tissue and an attenuated dartos layer beneath it, together with the effects of overt trauma from previous surgery [110,111] (Fig. 29). Hypospadias and LS are two separate conditions in their own right; nonetheless, most hypospadias-related strictures are distal with at least some dartos to support a repair and most LS-related strictures are also distal and the disease ‘burnt out’, or relatively quiescent. Such patients do well with excision of the fibrotic area, development of an adequate glans cleft, a BMG to recreate the granular urethra and then a carefully layered closure to minimize the risk of postoperative fistula formation, all in a one-stage procedure. The results in these circumstances are nearly the same as for bulbar urethroplasty. However, for those at the other end of the spectrum a staged procedure will be necessary (Fig. 30) to ensure graft take because one-stage tube grafts do not ‘take’ well [100]. Even with staged procedures the results are significantly worse than with bulbar urethroplasty and about half of patients having a planned two-stage procedure end up having an interval revision making it a three-stage procedure, albeit with an 85% chance of a durable repair [112]. Indeed, for those at the very far end of the spectrum with extensive, aggressive and active LS it might be better still to leave the stricture altogether alone and do a perineal urethrostomy [71,113], at least as a temporizing measure in the hope that the disease itself will settle down.

DIFFICULT SITUATIONS

Almost all available data is based on observational studies of patients with a patent urethral lumen, however tight it may be. But some patients have more or less completely obliterator strictures or full-length strictures with more or less obliterator segments, often having had repeated urethrotoomies and urethroplasties. Other than ‘expert opinion’ there is nothing to guide the surgeon on how to approach these problems [69]. Obliterative strictures do not do well with a ‘stricturotomy and patch’
FUTURE PROSPECTS

The results of excision and end-to-end anastomosis for short sharp strictures of the bulbous urethra are better than 95% in expert hands [115]. So good, in fact, that it seems unlikely that they could be bettered by any other technique. Nonetheless, reference has already been made to the minimalist non-transecting approach that some surgeons are adopting to these strictures. This seems likely to develop further in the future, together with other ways of minimizing the trauma of surgery [116].
FIG. 27. Flow chart of surgical steps in bulbar urethroplasty for short and long strictures.

BULBAR URETHROPLASTY

Short stricture

- Excision and end-to-end anastomosis with or without augmentation

Long stricture

- Stricturotomy and Patch with a Buccal Mucosal Graft
- Contra-indication to a graft
- Urethral segment must be excised
- Stricturotomy and Patch with a skin flap
- Excision and circumferential reconstruction, commonly in 2 stages

FIG. 28. Flow chart of surgical steps in penile urethroplasty.

PENILE URETHROPLASTY

- Stricturotomy and Patch with a Buccal Mucosal Graft or a Skin Flap
- Urethral segment must be excised
- Excision and circumferential reconstruction, commonly in 2 stages

FIG. 29. Hypospadias cripples as a consequence of the trauma of previous surgery.

The problem is really with the ‘stricturotomy and patch’ procedure, the one-stage distal penile urethroplasty for hypospadias and LS-related strictures, and the staged procedures, all of which require a graft. Endourethral grafting after urethrotomy has been tried in the past [117,118] but never did very well in the long term (anecdotally), probably because of the then impossibility of excising the scar tissue rather than incising it. This may become possible in the future. In the meantime, ‘off the shelf’ BMGs have become a possibility, at least in a laboratory setting, creating the likelihood of manufactured grafts in the future [119,120]. At the moment, these are buccal mucosal constructs and not without their problems, but reliable pseudo-stratified columnar epithelial constructs of urethral origin may become available as technology develops in the future.

What might be better than anything else, at least while these future prospects are being developed, would be some high quality clinical trials of what we are doing currently to make the evidence base stronger. Some stricture problems defy this approach but there are plenty of studies that could be done of the more common surgical procedures and the more common stricture problems. Equally, it is time for occasional urethral surgeons to
stop 'having a go' and doing urethroplasty just because they like to do it. Urethral surgery is a specialist activity that should be done in specialist centres by surgeons working together in teams to develop further our understanding of these problems and their treatment and therefore achieving better outcomes for our patients [121,122].

FIG. 30. The first stage of a staged repair: the diseased urethra has been excised, a glans cleft created and a BMG quilted in place. At 3 months later, the graft is ready to be rolled up and closed.

FIG. 31. When all else fails a salvage procedure can be attempted. The remaining native urethra was marsupialized at the first stage. Here a 3-cm wide strip is created and rolled up in layers to form a neo-urethra.
GUIDELINES FOR THE MANAGEMENT OF URETHRAL STRICTURES

Diagnosis
1. Consider a stricture as a cause of obstructive lower urinary tract symptoms in a man aged less than 65.
2. Get a symptom score completed and a flow rate study at the first visit – ideally with an ultrasound assessment of bladder wall thickness and residual urine.
3. If a retrograde urethrogram or a flexible cystoscopy can be done at that same consultation then do so, in that order of preference.
4. If the definitive investigation has to be arranged subsequently then arrange a retrograde urethrogram with a voiding cystogram.
5. If the bladder ultrasound was abnormal the upper urinary tract structure and renal function should be assessed.

Treatment by Instrumentation
6. In the absence of complications treatment is for symptoms not for the results of the flow rate study or imaging.
7. DVIU or dilatation are potentially curative in the first time treatment of a short sharp bulbar stricture <1 cm.
8. The procedure should be carried out under antibiotic cover and a catheter should be left in for 3 days afterwards.
9. A guide-wire should be used for DVIU.
10. In the presence of co-morbidities or in a patient who is happy to be palliated, occasional dilatation or DVIU are acceptable. Dilatation is preferable for meatal strictures and sphincter strictures and ‘easy’ strictures which can be treated in an office setting.
11. Self-catheterisation/dilatation may have a role in palliation but is not curative.
12. There is no role for stents in cure or palliation.

Treatment by Urethroplasty
13. Urethroplasty is the only curative option currently available for the treatment of recurrent bulbar strictures and for all other anterior urethral strictures whether or not they have been treated previously.

There has recently been an international consultation on urethral stricture disease (in Marrakech) and it is quite likely that a definitive set of guidelines will be produced from this.

CONFLICT OF INTEREST
None declared.

REFERENCES
3. Arnott J. A Treatise on Stricture of the Urethra. London: Burgess and Hill, 1819
21. Lentz HC, Mebus WK, Foret JD, Melchior J. Urethral strictures following...
42 Thompson H. *The Pathology and Treatment of Stricture of the Uretha Both in the Male and the Female*. London: John Churchill, 1865
45 Morey AF, McAninch JW, Duckett CP, Rogers RS. American Urological Association symptom index in the assessment of urethroplasty outcomes. *J Urol* 1998; 159: 1192–4
46 Heyns CF, Marais DC. Prospective evaluation of the American Urological Association symptom index and peak urinary flow rate for the followup of men with known urethral stricture disease. *J Urol* 2002; 168: 2051–4
48 Morey AF, McAninch JW. Role of preoperative sonourethrography in bulbar urethral reconstruction. *J Urol* 1997; 158: 1376–9
59 Greenwell TJ, Castle C, Andrich DE, MacDonald JT, Nicol DL, Mundy AR. Repeat urethrothromy and dilatation for the treatment of urethral stricture are neither clinically effective nor cost-effective. *J Urol* 2004; 172: 275–7
60 Matanhelia SS, Slaman R, John A, Matthews PN. A prospective
68 Tammela TL, Talia M. Biodegradable urethral stents. BJU Int 2003; 92: 843–50
70 Wright JL, Wessels H, Nathens AB, Hollingsworth W. What is the most cost-effective treatment for 1 to 2-cm bulbar urethral strictures: societal approach using decision analysis. Urology 2006; 67: 889–93
72 Wheelhouse CG. Perineal section, as performed at Leeds. BMJ 1876; 1: 779–80
73 Home E. Practical Observations on the Treatment of Strictures in the Urethra. London: George Nicol, 1795
75 Bryant T. Clinical Surgery on Stricture, Retention of Urine, Stone in the Bladder and Other Diseases of the Urinary Organs, Part IV. London: John Churchill, 1862
77 Mayo Robson AW. Traumatic urethral stricture cured by excision. BMJ 1885; 1: 481–2
79 Davis JS, Traut HF. The production of epithelial lined tubes and sacs: an experimental study. JAMA 1928; 86: 339–41
82 Leadbetter GW Jr. A simplified urethroplasty for stricteres of the bulbous urethra. J Urol 1960; 83: 54–9
100 Greenwell TJ, Venn SN, Mundy AR. Changing practice in anterior urethroplasty. BJU Int 1999; 83: 631–5
103 Andrich DE, Mundy AR. Substitution urethroplasty with buccal mucosal-free grafts. J Urol 2001; 165: 1131–4
Dorsal onlay buccal mucosa versus penile skin flap urethroplasty for anterior urethral strictures: results from a randomised prospective trial. J Urol 2007; 178: 2466–9

Andrich DE, Leach CJ, Mundy AR. The Barbagli procedure gives the best results for patch urethroplasty of the bulbar urethra. BJU Int 2001; 88: 385–9

Erickson BA, Wysock JS, McVary KT, Gonzalez CM. Erectile function, sexual drive, and ejaculatory function after reconstructive surgery for anterior urethral stricture disease. BJU Int 2006; 99: 607–11

Andrich DE, Mundy ARA. Fellowship programme in reconstructive urological surgery: what is it and what is it for? BJU Int 2010; 106: 108–11

Correspondence: Anthony R. Mundy, Institute of Urology, UCLH – Urology, 2nd Floor Central 250 Euston Road Trust Headquarters, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK. e-mail: kelly.higgs@uclh.nhs.uk

Abbreviations: BMG, buccal mucosal graft; DVIU, direct vision internal urethrotomy; LS, lichen sclerosus.